Diploma in Electronics & Communications Engineering

With Effect from 2020-21

C-20

Curriculum Development Cell
Department of Collegiate & Technical Education
Vision

[(To be drafted individually at institution level)]
Create an Environment to acquire skills through learning and practicing in the relevant domain to become effective and successful technician to augment the societal needs, upholding ethics and environmental concern.

Mission

[(To be drafted individually at institution level)]

- **M1**: Identification of relevant courses and their content necessary for the skill Development in Electronics and Communication Engineering.
- **M2**: Providing adequate emphasis for practical learning augmented by the relevant theoretical concepts.
- **M3**: Facilitating continuous evaluation and outcome assessment.
- **M4**: Opportunity to develop applications.
- **M5**: Facilitating an environment for interactive and interdisciplinary learning.
- **M6**: Exposure to industries, professional bodies and social activities.

Programme Educational Objectives (PEOs)

[(To be drafted individually at institution level)]

(After 2/3 years of graduation, the students will have the ability to)

<table>
<thead>
<tr>
<th>PEO1</th>
<th>Demonstrate, Update and adapt domain knowledge in the area of electronics and communication engineering and the allied fields to propose solutions for the core industry in the ever changing global enterprise with ethical practices.</th>
</tr>
</thead>
<tbody>
<tr>
<td>PEO2</td>
<td>Assume leadership roles and succeed in their chosen career path, in industry or public service through engineering ability, life skills and multidisciplinary skill set acquired.</td>
</tr>
<tr>
<td>PEO3</td>
<td>Pursue higher education institutes of national level.</td>
</tr>
</tbody>
</table>

PROGRAM OUTCOMES (POs)

1. **Basic and Discipline specific knowledge**: Apply knowledge of basic mathematics, science and engineering fundamentals and engineering specialization to solve the engineering problems.
2. **Problem analysis**: Identify and analyze well-defined engineering problems using codified standard methods.
3. **Design/ development of solutions**: Design solutions for well-defined technical problems and assist with the design of systems components or processes to meet specified needs.
4. **Engineering Tools, Experimentation and Testing**: Apply modern engineering tools and appropriate technique to conduct standard tests and measurements.
5. **Engineering practices for society, sustainability and environment:** Apply appropriate technology in context of society, sustainability, environment and ethical practices.

6. **Project Management:** Use engineering management principles individually, as a team member or a leader to manage projects and effectively communicate about well-defined engineering activities.

7. **Life-long learning:** Ability to analyze individual needs and engage in updating in the context of technological changes.

CONSISTENCY MATRIX OF PEO’S WITH MISSION

<table>
<thead>
<tr>
<th>PEO statements</th>
<th>Adapt to Industry</th>
<th>Higher Learning</th>
<th>Team Spirit</th>
<th>Self-Learning</th>
<th>Leadership Qualities</th>
<th>Societal Needs</th>
<th>Environmental Concern</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Demonstrate, Update and adapt domain knowledge in the area of electronics and communication engineering and the allied fields to propose solutions for the core industry in the ever changing global enterprise with ethical practices.</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>2 Assume leadership roles and succeed in their chosen career path, in industry or public service through engineering ability, life skills and multidisciplinary skill set acquired.</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>3 Pursue higher education institutes of national level.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

PROGRAM SPECIFIC OUTCOMES (PSOs)

Program shall specify 2-4 Program Specific Outcomes

(To be drafted individually at institution level)

<table>
<thead>
<tr>
<th>PSO</th>
<th>Outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>PSO1</td>
<td>Design and simulate basic electronic circuits and make use of the measuring instruments in the design of analog and digital circuits</td>
</tr>
<tr>
<td>PSO2</td>
<td>Apply principles of mathematics, signals and communication theory to analyze different types of signals and operations on signals.</td>
</tr>
</tbody>
</table>

1.0 GENERAL PROGRAMME STRUCTURE AND CREDIT DISTRIBUTION

1. **Definition of Credit:** Credit is a kind of weightage given to the contact hours to teach the prescribed syllabus, which is in a modular form. For courses, one credit is allocated to one contact hour for theory / tutorial per week and one credit is allocated to 02 contact hours for practical.

2. **Choice-Based Credit System (CBCS):** CBCS is a flexible system of learning that permits students to learn at their own pace, choose electives from a wide range of elective courses
and adopt an inter-disciplinary approach in learning and make best use of the expertise of available faculty.

3. **Range of Credits**

<table>
<thead>
<tr>
<th>Activity</th>
<th>Credit(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Hr. Lecture (L) per week</td>
<td>1 credit</td>
</tr>
<tr>
<td>1 Hr. Practical (P) per week</td>
<td>0.5 credit</td>
</tr>
<tr>
<td>1 Hr. Tutorial (T) per week</td>
<td>1 credit</td>
</tr>
<tr>
<td>4 Hrs. Theory (T) per week</td>
<td>4 credit</td>
</tr>
<tr>
<td>3 Hrs. Practical (P) per week</td>
<td>2 credit</td>
</tr>
<tr>
<td>[1 Hr. Tutorial +2 Hrs. Practical]</td>
<td></td>
</tr>
</tbody>
</table>

4. **Programme:** Programme means Diploma Programme that is Diploma in Electronics & Communications Engineering, which is of three years duration.

2.0 PROGRAMME STRUCTURE

1. **Course:** A Course is a component (a paper) of a Programme. All the courses need not carry same weightage. The course should define Course objectives. A course may be designed to involve lectures / tutorials / laboratory work / seminar / project work / Internships / seminar or a combination of these, to meet effectively the teaching and learning needs and the credits may be assigned suitably.

2. **Course Code:** Each course shall have an alphanumeric code, which includes last two digits of year of introduction such as 20 subject code EC (EC for Electronics & Communication engineering, CH for Chemical Engineering etc.), then first two digits for example 12 (where 1 represents first semester and 2 represents the course number in incremental order) and the last alphabet represent Theory (T), Practical/Internship/Project (P), Drawing (D), Programme / Open Electives (A, B, C, E, F, G ...).

3. **Programme Courses:** Each Programme will consist of Communication skills and Social Sciences (HS), Engineering Mathematics, Statistics and Analytics (BS), Engineering Sciences (ES), Professional Core (PC), Professional Electives (PE), Open Electives (OE), Employability Enhancement Courses (EEC) and Internships.

 1. **Communication Skills and Social Sciences:** Communication Skills and Social Science courses are incorporated in the curriculum to meet the desired needs of communication and life skills amongst students.

 2. **Engineering Mathematics, Statistics and Analytics:** Common to all Engineering Programme to develop reasoning and analytical skills amongst students.

 3. **Engineering Sciences:** Engineering Science shall create awareness on different specializations of engineering studies. The goal of these courses are to create engineers of tomorrow, who possess the knowledge of all disciplines and can apply their interdisciplinary
knowledge in every aspect. It could be any branch of engineering - Civil, Computer Science and Engineering, Electrical, Mechanical, etc.

4. **Professional Core**: Core Courses designed in the programme which are major courses of the discipline, required to attain desired outcomes and to ignite critical thinking skills amongst students.

5. **Professional Elective**: Generally a course can be chosen from a pool of courses and which may be very specific or specialized or advanced or supportive to the discipline or nurtures the candidate's proficiency/skill is called Professional Elective Course.

6. **Open Electives**: An elective course chosen generally from other discipline/subject, with an intention to seek interdisciplinary exposure is called an open elective. While choosing the electives, students shall ensure that they do not opt for the courses with syllabus contents of which are similar to that of their departmental core/elective courses.

7. **Audit / Non-Core Courses**: An audit / Non-core course is one in which the student attends classes, does the necessary assignments, and takes exams. The Institute encourages students towards extra learning by auditing for additional number of courses. The results of audit courses shall not be considered for prescribed "carry over courses" limit, however students need to pass audit courses for awarding the diploma.

8. **Employability Enhancement Courses**: It contains the following courses:
 a. **Mini Project**: Mini Project is a laboratory oriented course which will provide a platform to students to enhance their practical knowledge and skills by development of small systems/application.
 b. **Seminar**: Seminar should be based on thrust areas in state of art technologies. Students should identify the topic of seminar and finalize in consultation with Guide. Students should understand the topic and compile the report in standard format and present in front of Panel of Examiners respective Programme.
 c. **Major Project**: Every student must do one major project in the Final year of their program. The minimum duration of project is 6 months. Students can do their major project in Industry or R&D Lab or in house or combination of any two.
3.0 COURSE CODE AND DEFINITION:

<table>
<thead>
<tr>
<th>Course code</th>
<th>Definitions</th>
<th>Teaching Dept. Code</th>
<th>Name of the Teaching Department</th>
<th>Teaching Dept. Code</th>
<th>Name of the Teaching Department</th>
</tr>
</thead>
<tbody>
<tr>
<td>L</td>
<td>Lecture</td>
<td>SC</td>
<td>Science</td>
<td>MI</td>
<td>Mechanical Engineering [Instruments]</td>
</tr>
<tr>
<td>T</td>
<td>Tutorial</td>
<td>CP</td>
<td>Commercial Practice / English</td>
<td>CR</td>
<td>Ceramic Engineering</td>
</tr>
<tr>
<td>P</td>
<td>Practical</td>
<td>ME</td>
<td>Mechanical Engineering</td>
<td>EN</td>
<td>Civil Environmental Engg.</td>
</tr>
<tr>
<td>HS</td>
<td>Humanities & Social Sciences</td>
<td>EE</td>
<td>Electrical & Electronics Engg.</td>
<td>AN</td>
<td>Aeronautical Engg.</td>
</tr>
<tr>
<td>BS</td>
<td>Basic Science Courses</td>
<td>CE</td>
<td>Civil Engineering</td>
<td>MN</td>
<td>Mining & Mine Surveying</td>
</tr>
<tr>
<td>PC</td>
<td>Program Core Courses</td>
<td>CS</td>
<td>Comp Science &Engg.</td>
<td>LI</td>
<td>Library and Information Science</td>
</tr>
<tr>
<td>PE</td>
<td>Program Elective Courses</td>
<td>IS</td>
<td>Info Science &Engg.</td>
<td>FT</td>
<td>Apparel Design and Fabrication Technology</td>
</tr>
<tr>
<td>OE</td>
<td>Open Elective Courses</td>
<td>AT</td>
<td>Automobile Engg.</td>
<td>CH</td>
<td>Chemical Engineering</td>
</tr>
<tr>
<td>AU</td>
<td>Audit Courses</td>
<td>MC</td>
<td>Mechatronics</td>
<td>PO</td>
<td>Polymer Technology</td>
</tr>
<tr>
<td>SI</td>
<td>Summer Internship</td>
<td>MT</td>
<td>Metallurgical Engg.</td>
<td>PT</td>
<td>Printing Technology</td>
</tr>
<tr>
<td>PR</td>
<td>Project</td>
<td>HP</td>
<td>Mechanical Engineering [HPT]</td>
<td>TX</td>
<td>Textile Technology</td>
</tr>
<tr>
<td>CIE</td>
<td>Continuous Internal Evaluation</td>
<td>CN</td>
<td>Cinematography</td>
<td>LT</td>
<td>Leather & Fashion Technology</td>
</tr>
<tr>
<td>SEE</td>
<td>Semester End Examination</td>
<td>SR</td>
<td>Sound Recording &Engg.</td>
<td>WH</td>
<td>Water Technology & Health Science</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PH</td>
<td>Civil (Public Health & Environment) Engg.</td>
<td>MY</td>
<td>Mechanical Engineering [Machine Tools]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TD</td>
<td>Tool & Die Making</td>
<td>AR</td>
<td>Architecture</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ID</td>
<td>Interior Decoration</td>
<td>EG</td>
<td>English</td>
</tr>
</tbody>
</table>
4.0 INDUCTION PROGRAMME

The Essence and Details of Induction program can also be understood from the “Detailed Guide on Student Induction program”, as available on AICTE Portal, although that is for Diploma students of Engineering & Technology. Suggestive schedule for induction program is given below.

(Link: https://www.aicteindia.org/sites/default/files/Detailed%20Guide%20on%20Student%20Induction%20program.pdf)

Induction Program Schedule (Suggestive only)

(Induction program for students to be offered right at the start of the first year)

<table>
<thead>
<tr>
<th>SL NO</th>
<th>DAY</th>
<th>TIME</th>
<th>ACTIVITY</th>
<th>VENUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>09.30-12.30</td>
<td>Registration, Formation of Mentor-mentee groups – Introduction of mentors with-in group.</td>
<td>Class rooms of respective programs</td>
</tr>
<tr>
<td></td>
<td></td>
<td>01.30-04.30</td>
<td>Screening of Institute video clips of various functions held and Photos of various events, Institution Excursion</td>
<td>Seminar hall</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>09.30-12.30</td>
<td>Prayer- Physical activities such as yoga; Presentation cum Interactive Session with: Important Institution Functionaries like Principal, HoDs etc.</td>
<td>Play ground and seminar hall</td>
</tr>
<tr>
<td></td>
<td></td>
<td>01.30-04.30</td>
<td>Visit to Central facilities such as Reading room,library, Sport centre, computer centre, hostel, NSS/NCC cell, community development cell functioning in polytechnic</td>
<td>Tour</td>
</tr>
<tr>
<td></td>
<td></td>
<td>01.30-04.30</td>
<td>Lecturer sessions about importance of NSS/NCC/Youth red cross activities and their contribution towards national building and personality and character development</td>
<td>Seminar hall</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>09.30-12.30</td>
<td>Personality development talk on Human values</td>
<td>Seminar hall</td>
</tr>
<tr>
<td></td>
<td></td>
<td>01.30-04.30</td>
<td>Interaction with Alumni students of polytechnic of different programs and interaction with few alumina and sharing their experiences</td>
<td>Seminar hall</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>09.30-12.30</td>
<td>Introduction to Swatch bharathabhiyan-Importance of abhiyan-Clean drive in around college</td>
<td>Campus</td>
</tr>
<tr>
<td></td>
<td></td>
<td>01.30-04.30</td>
<td>Talent hunt-Music/Antakshri/Instrument play/ Dance/Team Activity</td>
<td>College Auditorium</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>09.30-12.30</td>
<td>Talent hunt Activity: Essay/Debate/Best out of Waste/Pick and speak,other</td>
<td>Seminar hall</td>
</tr>
<tr>
<td></td>
<td></td>
<td>01.30-04.30</td>
<td>Screening of Movie related: personality development, character building, motivational, Environmental concern, Public health, rural sanitation</td>
<td>College Auditorium</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>09.30-12.30</td>
<td>Exchange of views between students and faculty about their Institute/program/carrier opportunities</td>
<td>Seminar hall</td>
</tr>
<tr>
<td></td>
<td></td>
<td>01.30-04.30</td>
<td>Games/Sports Activity</td>
<td>Sports ground</td>
</tr>
<tr>
<td>Time</td>
<td>Activity</td>
<td>Location</td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>--</td>
<td>--------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>09.30-12.30</td>
<td>Talk by training and placement cell: Carrier opportunities for diploma students, placement activities in college; placement process</td>
<td>Training and placement cell</td>
<td></td>
<td></td>
</tr>
<tr>
<td>01.30-04.30</td>
<td>Talents hunt Activity: (Street Play/Mime/Acting/Stand Up Comedy /Dance etc.)</td>
<td>Seminar hall</td>
<td></td>
<td></td>
</tr>
<tr>
<td>09.30-12.30</td>
<td>Personality development talks by eminent speakers on - Leadership styles/How to handle failures/stress management</td>
<td>Seminar hall</td>
<td></td>
<td></td>
</tr>
<tr>
<td>01.30-04.30</td>
<td>Importance of student union, student union activities, Student insurance, How to make student insurance by Student welfare officer of college</td>
<td>Seminar hall</td>
<td></td>
<td></td>
</tr>
<tr>
<td>09.30-12.30</td>
<td>Awareness on; Student scholarship- introduction to SSP portal – e-pass portal-Authenticated documents, how to apply in portal: Talk by Taluk/District social welfare officer</td>
<td>Seminar hall</td>
<td></td>
<td></td>
</tr>
<tr>
<td>01.30-04.30</td>
<td>Local visits to surrounding places/Industry</td>
<td>Tour</td>
<td></td>
<td></td>
</tr>
<tr>
<td>09.30-12.30</td>
<td>Talk on Respective Program scheme of studies and detail of courses, Diploma examination pattern, Passing and eligibility criteria, attendance requirements by respective program coordinator</td>
<td>Department Class rooms</td>
<td></td>
<td></td>
</tr>
<tr>
<td>01.30-04.30</td>
<td>Visit to respective programs lab/work shops of institution</td>
<td>Tour</td>
<td></td>
<td></td>
</tr>
<tr>
<td>09.30-12.30</td>
<td>Awareness camp on human health ,Community health, Personal hygiene-By Local Taluk medical officer/Community medical officer</td>
<td>Seminar hall</td>
<td></td>
<td></td>
</tr>
<tr>
<td>01.30-04.30</td>
<td>Collection of student feedback on induction program- Make a report Valedictory of two weeks Induction program by collecting student feed back</td>
<td>Seminar hall</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Induction Program (mandatory)

<table>
<thead>
<tr>
<th>Two-week Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Physical activity</td>
</tr>
<tr>
<td>• Creative arts</td>
</tr>
<tr>
<td>• Universal human values</td>
</tr>
<tr>
<td>• Literacy</td>
</tr>
<tr>
<td>• Proficiency modules</td>
</tr>
<tr>
<td>• Lectures by Eminent People</td>
</tr>
<tr>
<td>• Visits to Local Areas</td>
</tr>
<tr>
<td>• Familiarization to Dept./Branch & Innovations</td>
</tr>
</tbody>
</table>

5.0 MANDATORY VISITS/WORKSHOP/EXPERT LECTURES:

1. It is mandatory to arrange one industrial visit every semester for the students of each branch.
2. It is mandatory to conduct a One-week workshop during the winter break after fifth semester on professional/industry/entrepreneurial orientation.
3. It is mandatory to organize at least one expert lecture per semester for each branch by inviting resource persons from domain specific industry.
6.0 EVALUATION SCHEME:

A. For Theory Courses:
The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The student has to obtain minimum of 40% marks individually both in CIE and SEE to pass. Theory Semester End Exam (SEE) is conducted for 100 marks (3 Hours duration). Based on this grading will be awarded

B. For Practical Courses:
The weightage of Continuous Internal Evaluation (CIE) is 60% and for Semester End Exam (SEE) is 40%. The student has to obtain minimum of 40% marks individually both CIE and SEE to pass. The practical Semester End Exam (SEE) is conducted for 100 marks (3 Hours duration exams). Based on this grading will be awarded.

C. For Summer Internship / Projects / Seminar etc.
 1. Evaluation is based on work done, quality of report, performance in viva-voce, presentation etc.

Note:
A. The Continuous Internal Evaluation (CIE) is based on the student's performance in Internal Assessment tests, student activity, mini project, quizzes, assignments, seminars, viva-voce in practical, lab record etc as specified in respective course curriculum.
B. Major Project/Mini Project: Students can do their major project in Industry or R&D Labor in house. Mini Project is a laboratory oriented course which will provide a platform to students to enhance their practical knowledge and skills by development of small systems/application.

C. Personality and character development: It is mandatory for the students from 1st semester to enroll in any one of the personality and character development programmes (NCC/NSS/YRC/Yoga/Technical Club) and undergo training for their Personality and character development.
 • National Cadet Corps (NCC).
 • National Service Scheme (NSS) will have social service activities in and around the Institution.
 • Youth Red Cross (YRC) will have activities in and around the institution.
 • Yoga
 • Technical Clubs.

D. Internship: A minimum of 10 credits (400 Hrs) of Internship/ Entrepreneurial activities / Project work/ Seminar and Inter/ Intra Institutional Training may be counted toward three-year diploma programme.

E. Mapping of Marks to Grades: Each course (Theory/Practical) is to be assigned 100 marks, irrespective of the number of credits, and the mapping of marks to grades may be done as per the following table:
Range of Marks, Level, Assigned Grade, and Grade Point

<table>
<thead>
<tr>
<th>Range of Marks</th>
<th>Level</th>
<th>Assigned Grade</th>
<th>Grade Point</th>
</tr>
</thead>
<tbody>
<tr>
<td>91-100</td>
<td>Outstanding</td>
<td>A+</td>
<td>10</td>
</tr>
<tr>
<td>81-90</td>
<td>Excellent</td>
<td>A</td>
<td>09</td>
</tr>
<tr>
<td>71-80</td>
<td>Very Good</td>
<td>B+</td>
<td>08</td>
</tr>
<tr>
<td>61-70</td>
<td>Good</td>
<td>B</td>
<td>07</td>
</tr>
<tr>
<td>51-60</td>
<td>Above Average</td>
<td>C+</td>
<td>06</td>
</tr>
<tr>
<td>45-50</td>
<td>Average</td>
<td>C</td>
<td>05</td>
</tr>
<tr>
<td>40-44</td>
<td>Satisfactory</td>
<td>D</td>
<td>04</td>
</tr>
<tr>
<td><40</td>
<td>Fail</td>
<td>F</td>
<td>00</td>
</tr>
</tbody>
</table>

Note: Those Candidates who have not obtained requisite minimum pass marks in CIE are not eligible to take up SEE in that course until they get requisite minimum pass marks in the CIE. They may re-register for the CIE in the subsequent regular semesters by paying prescribed examination fee.

SGPA and CGPA Calculations

Semester Grade Point Average (SGPA)=

$$\frac{\sum[(\text{Course Credits earned}) \times (\text{Grade Points})]}{\sum[\text{Total Course credits applied}]}$$

for all the courses in that semester

Cumulative Grade Point Average (CGPA)=

$$\frac{\sum[(\text{Course Credits earned}) \times (\text{Grade Points})]}{\sum[\text{Total Course Credits earned}]}$$

excluding those with F*/F** grades until that semester

Note: The SGPA and CGPA shall be rounded off to 2 decimal points and reported in the semester Diploma marks/grade card.

A. SGPA and CGPA Calculations: An illustrative example for one academic year

<table>
<thead>
<tr>
<th>Semester</th>
<th>Course Code</th>
<th>Credits Applied (CA)</th>
<th>Result Grade</th>
<th>Grade Points (GP)</th>
<th>Credits Earned (CE)</th>
<th>Credit points (CP=CE x GP)</th>
<th>SGPA, CGPA</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Course 1</td>
<td>4</td>
<td>B</td>
<td>7</td>
<td>4</td>
<td>4x7=28</td>
<td></td>
</tr>
<tr>
<td>I</td>
<td>Course 2</td>
<td>4</td>
<td>F</td>
<td>0</td>
<td>0</td>
<td>0x0=00</td>
<td></td>
</tr>
<tr>
<td>I</td>
<td>Course 3</td>
<td>4</td>
<td>Absent (F)</td>
<td>0</td>
<td>0</td>
<td>0x0=00</td>
<td></td>
</tr>
<tr>
<td>I</td>
<td>Course 4</td>
<td>4</td>
<td>A</td>
<td>9</td>
<td>4</td>
<td>4x9=36</td>
<td></td>
</tr>
<tr>
<td>I</td>
<td>Course 5</td>
<td>2</td>
<td>A+</td>
<td>10</td>
<td>2</td>
<td>2x10=20</td>
<td></td>
</tr>
<tr>
<td>I</td>
<td>Course 6</td>
<td>2</td>
<td>D</td>
<td>4</td>
<td>2</td>
<td>2x4=08</td>
<td></td>
</tr>
<tr>
<td>I</td>
<td>Course 7</td>
<td>2</td>
<td>A</td>
<td>9</td>
<td>2</td>
<td>2x9=18</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>22</td>
<td></td>
<td></td>
<td>14</td>
<td>110</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: In 1st semester grade/marks card only SGPA is reported. From 2nd semester onwards both SGPA & CGPA will be reported in the grade/marks card.
Semester	Course Code	Credits Applied (CA)	Result Grade	Credits Earned (CE)	Credit points (CP=CE x GP)	SGPA, CGPA
II | Course 1 | 4 | B | 7 | 4 | 28 | SGPA=CP/CA =100/19 = 5.26 | CGPA = CP/CE = (110+136)/(14+22) = 246/36 = 6.83
II | Course 2 | 4 | A | 9 | 4 | 36 |
II | Course 3 | 3 | D | 4 | 3 | 12 |
II | Course 4 | 3 | Absent (F) | 0 | 0 | 0 |
II | Course 5 | 2 | A+ | 10 | 2 | 20 |
II | Course 6 | 1 | D | 4 | 1 | 4 |
II | Course 7 | 2 | F | 0 | 0 | 0 |

I Semester Back log courses
I | Course 2 | 4 | C | 5 | 4 | 20 |
I | Course 3 | 4 | D | 4 | 4 | 16 |

Total 27 22 136

- Total credits of the semester excluding the credits of the courses under F/F*/F** grade are considered for the calculation of CGPA of the two consecutive semesters under consideration.

B. CGPA Calculation of the entire programme: An Illustrative Example.

<table>
<thead>
<tr>
<th>Semester</th>
<th>I</th>
<th>II</th>
<th>III</th>
<th>IV</th>
<th>V</th>
<th>VI</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Credits of the Semester</td>
<td>22</td>
<td>19</td>
<td>24</td>
<td>24</td>
<td>24</td>
<td>24</td>
<td>137</td>
</tr>
<tr>
<td>(\sum CP)</td>
<td>110</td>
<td>136</td>
<td>184</td>
<td>155</td>
<td>191</td>
<td>188</td>
<td>964</td>
</tr>
</tbody>
</table>

\[
CGPA = \frac{110 + 136 + 184 + 155 + 191 + 18}{22 + 19 + 24 + 24 + 24 + 24} = \frac{964}{137} = 7.04
\]

P=Percentage Conversion= (CGPA-0.75) X 10

Class Declaration:

After the conversion of final CGPA into percentage of marks (P), a graduating student is declared to have passed in:

(i) First Class with Distinction (FCD) if P ≥ 70%
(ii) First Class (FC) if P ≥ 60% but <70% and
(iii) Second Class (SC) if P < 60%.
SCHEME OF STUDIES
DIPLOMA IN ELECTRONICS & COMMUNICATIONS ENGINEERING
(C-20)
CURRICULUM STRUCTURE

I Semester Scheme of Studies - Diploma in Electronics & Communications Engineering [C-20]

<table>
<thead>
<tr>
<th>S. N</th>
<th>Course Category / Teaching Department</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Hours per week</th>
<th>Total contact hrs week</th>
<th>Credits</th>
<th>CIE Marks</th>
<th>SEE Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>L</td>
<td>T</td>
<td>P</td>
<td></td>
<td>Max</td>
</tr>
<tr>
<td>1</td>
<td>ES/EC</td>
<td>20EC11T</td>
<td>Digital Electronics</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>BS/SC</td>
<td>20SC02P</td>
<td>Statistics and Analytics</td>
<td>2</td>
<td>0</td>
<td>4</td>
<td>6</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>ES/ME</td>
<td>20ME02P</td>
<td>Computer Aided Engineering Graphics</td>
<td>2</td>
<td>0</td>
<td>4</td>
<td>6</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>ES/EE/EC</td>
<td>20EC01P</td>
<td>Fundamentals of Electrical & Electronics Engineering.</td>
<td>2</td>
<td>0</td>
<td>4</td>
<td>6</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>AU/SC</td>
<td>20AU01T</td>
<td>Environmental Sustainability</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>6</td>
<td>AU Physical Activity</td>
<td></td>
<td>Sports/NCC/NSS/Youth Red Cross/Yoga/Technical club.</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

THEORY COURSES

PRACTICAL COURSES

AUDIT COURSES

Student shall enrol in any one of these activities in 1st semester and shall participate actively. The student shall obtain ‘Participation Certificate’ in the activity to get eligible for the award of Diploma.

Total

| | 14 | 0 | 12 | 24 | 18 | 270 | 180 | 72 | 450 | 180 |

Note:
1. Assigned Grade, Grade Point, SGPA and CGPA to be recorded in the Grade/Marks card.
2. AU- Physical Activity- Student participation in the selected physical activity shall be monitored and the participation record shall be maintained by the respective Programme Coordinator (Head of Section).
3. Theory course Semester End Examination (SEE) is conducted for 100 marks (3 Hours duration)
4. Practical course CIE and SEE is conducted for 100 marks (3 Hours duration)
II Semester Scheme of Studies - Diploma in Electronics & Communications Engineering [C-20]

<table>
<thead>
<tr>
<th>SL No</th>
<th>Course Category / Teaching Department</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Hours per week</th>
<th>Total contact hrs/week</th>
<th>Credits</th>
<th>CIE Marks</th>
<th>SEE Marks</th>
<th>Total Marks</th>
<th>Min Marks for Passing</th>
<th>Assigned Grade</th>
<th>Grade Point</th>
<th>SGPA and CGPA of 2nd Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>20PM01T</td>
<td>Project Management Skills</td>
<td>2 0 4 6 4</td>
<td>4</td>
<td>50</td>
<td>20</td>
<td>50</td>
<td>20</td>
<td>100 40</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>BS/SC</td>
<td>20SC01T</td>
<td>Engineering Mathematics</td>
<td>4 0 0 4 4</td>
<td>4</td>
<td>50</td>
<td>20</td>
<td>50</td>
<td>20</td>
<td>100 40</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>3</td>
<td>EG/SC/EC</td>
<td>20EG01P</td>
<td>Communication Skills</td>
<td>2 0 4 6 4</td>
<td>4</td>
<td>60</td>
<td>24</td>
<td>40</td>
<td>16</td>
<td>100 40</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>ES/CS</td>
<td>20CS01P</td>
<td>IT Skills</td>
<td>2 0 4 6 4</td>
<td>4</td>
<td>60</td>
<td>24</td>
<td>40</td>
<td>16</td>
<td>100 40</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>ES/EC</td>
<td>20EC21P</td>
<td>Electronic Components & Devices</td>
<td>2 0 4 6 4</td>
<td>4</td>
<td>60</td>
<td>24</td>
<td>40</td>
<td>16</td>
<td>100 40</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>AU/KA</td>
<td>20KA21T</td>
<td>Kannada-I/ಸಾಂಸ್ಕೃತಿಕತಾ ಭಾಷೆ I /ಸಾಂಸ್ಕೃತಿಕತಾ ಭಾಷೆ - I</td>
<td>2 0 0 2 2</td>
<td>2</td>
<td>50</td>
<td>20</td>
<td>-</td>
<td>-</td>
<td>50 20</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Audit Courses

<table>
<thead>
<tr>
<th>SL No</th>
<th>Course Category / Teaching Department</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Hours per week</th>
<th>Total contact hrs/week</th>
<th>Credits</th>
<th>CIE Marks</th>
<th>SEE Marks</th>
<th>Total Marks</th>
<th>Min Marks for Passing</th>
<th>Assigned Grade</th>
<th>Grade Point</th>
<th>SGPA and CGPA of 2nd Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

Total

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>12 0 20</td>
<td>32 22 340</td>
<td>136 210</td>
<td>84 550 220</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note:
1. Assigned Grade, Grade Point, SGPA and CGPA to be recorded in the Grade/Marks card.
2. Theory course Semester End Examination (SEE) is conducted for 100 marks (3 Hours duration).
3. Practical course CIE and SEE is conducted for 100 marks (3 Hours duration).
i) RATIONALE

Innumerable logical and complex problems prevail in the real world which need quick and accurate solutions at low cost. The examples include: Counting number of people entering cinema hall; digital clock; playing video; phone call; transmission of document from one place to other; searching your unique ID in Aadhaar database; withdrawing money from ATM; booking railway ticket; and to check if a 25-digit number is a prime-number or not.

Inherent mapping of real-world problems to digital domain, ability of electronic circuits to process digital signals/binary signals and the support of Boolean algebra/relevant mathematical theories for simplification of circuits and reduction of time-complexity have made digital electronics the most suitable option for solving real-world problems. In fact, digital electronics can provide solutions at electronic-speed and low-cost owing to the enhancements in circuit design, fabrication technology and mass production. And the fact that the hardware of computer is digital electronic circuits elucidates the relevance of digital electronics and it learning. In this context, it is very essential to learn the basics of digital electronics to be a competent electronics professional.

ii) COURSE SKILL SET

The goal of the course is to help the student to attain the following industry-need competencies through various teaching-learning processes.

i) To understand the simple real-world logical problems and Learning to solve them through established methods.
i) Perform analysis, design and troubleshoot well-known simple digital circuits in practical environment.

ii) To acquire the basic knowledge digital electronic integrated circuits and specifications.

iii) INSTRUCTIONAL STRATEGY

1. Teachers are suggested to take measures to create interest and enhance learning confidence in students.
2. Teachers should give examples from daily routine/realistic/real-world as well as relate to engineering/technology applications on various concepts and principles in each topic so that students are made to understand and grasp the concepts and principles. Wherever applicable SI units are followed.
3. Demonstration can make the subject interesting and develop scientific temper in the students. Student activities should be planned on all the topics.
4. Theory - Demonstrate/practice-Activity approach may be followed throughout the course so that learning may be outcome and employability based.
5. All demonstrations/Hand-on practices are under simulated environment (may be followed by real environment as far as possible).

iv) COURSE OUTCOMES (COs)

On successful completion of the course, the students will be able to

<table>
<thead>
<tr>
<th>CO1</th>
<th>Identify and apply arithmetic and conversion operations on different number systems</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO2</td>
<td>Formulate, simplify and implement simple logic functions</td>
</tr>
<tr>
<td>CO3</td>
<td>Build/design and analyze various combinational circuits</td>
</tr>
<tr>
<td>CO4</td>
<td>Identify and select digital integrated circuits (ICs) for simple applications</td>
</tr>
</tbody>
</table>

v) COURSE TOPICS

<table>
<thead>
<tr>
<th>Unit No</th>
<th>Unit Name</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Number Systems and Codes</td>
<td>8</td>
</tr>
<tr>
<td>2</td>
<td>Basic Logic Circuits</td>
<td>14</td>
</tr>
</tbody>
</table>
vi) COURSE CONTENTS

The following topics/sub topics is to be taught and assessed in order to develop Unit Skill sets for achieving CO to attain identified skill sets.

<table>
<thead>
<tr>
<th>Course Content Delivery</th>
<th>Learning Method</th>
<th>Duration L:P (Hr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>UNIT –I: NUMBER SYSTEMS AND CODES (8Hr)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.1 Comparison between analog and digital signals with real-world examples. Number systems: Binary, Octal, Decimal and Hexadecimal. Relevance and examples.</td>
<td>Teaching, examples and exercises</td>
<td>1:0</td>
</tr>
<tr>
<td>1.2 Conversion between number systems with examples</td>
<td>Teaching, examples and exercises</td>
<td>2:0</td>
</tr>
<tr>
<td>1.3 Arithmetic operations-Addition, Subtraction, Multiplication and Division on binary numbers with examples.</td>
<td>Teaching, examples and exercises</td>
<td>1:0</td>
</tr>
<tr>
<td>1.4 Addition and subtraction of Hexadecimal numbers. 1’s & 2’s complement of binary numbers with examples.</td>
<td>Teaching, examples and exercises</td>
<td>1:0</td>
</tr>
<tr>
<td>1.5 Application of Complement numbers: Representation of signed binary numbers and Example for realizing subtraction using addition.</td>
<td>Teaching, examples and exercises</td>
<td>1:0</td>
</tr>
<tr>
<td>1.6 Codes: Relevance, types (BCD, Gray, Excess-3, ASCII and EBCDIC) with examples and applications.</td>
<td>Teaching, examples and exercises</td>
<td>1:0</td>
</tr>
<tr>
<td>Topic</td>
<td>Content</td>
<td>Teaching, examples and exercises</td>
</tr>
<tr>
<td>-------</td>
<td>---------</td>
<td>----------------------------------</td>
</tr>
<tr>
<td>1.7</td>
<td>BCD Addition, Conversion between BCD and Decimal, Binary and Gray Numbers, Decimal and Excess-3 with examples.</td>
<td></td>
</tr>
<tr>
<td>UNIT –2: BASIC LOGIC CIRCUITS (14Hr)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.1</td>
<td>Boolean algebra: Constants, variables, functions, Logic-gates (NOT, OR, AND, NOR, NAND, EX-OR and EX-NOR): Symbol, function, expression and truth-table.</td>
<td>Teaching, examples and exercises Hands-on demonstration/ practice for all logic gates</td>
</tr>
<tr>
<td>2.2</td>
<td>Boolean identities and laws with proof and examples.</td>
<td>Teaching, examples and exercises</td>
</tr>
<tr>
<td>2.3</td>
<td>De Morgan's and Duality Theorem with proof and examples.</td>
<td>Teaching, examples and exercises Hands-on demonstration/ practice for De Morgan's theorem</td>
</tr>
<tr>
<td>2.4</td>
<td>Universal gates: Concept, examples, relevance and realization of all logic gates using NAND gate.</td>
<td>Teaching, examples and exercises</td>
</tr>
<tr>
<td>2.5</td>
<td>Realization of all logic gates using NOR gate.</td>
<td>Teaching, examples and exercises</td>
</tr>
<tr>
<td>2.6</td>
<td>Simplification of Boolean expressions using Boolean algebra and build the logic circuit.</td>
<td>Teaching, examples and exercises</td>
</tr>
<tr>
<td>2.7</td>
<td>SOP and POS forms, Conversion into standard SOP and POS forms.</td>
<td>Teaching, examples and exercises</td>
</tr>
<tr>
<td>2.8</td>
<td>Translate SOP and POS expressions into truth-table, Convert truth-table to SOP and POS expressions (maximum 4 variables).</td>
<td>Teaching, examples and exercises</td>
</tr>
<tr>
<td>2.9</td>
<td>SOP to POS & POS to SOP conversion</td>
<td>Teaching, examples and exercises</td>
</tr>
<tr>
<td>Section</td>
<td>Description</td>
<td>Teaching, examples and exercises</td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
<td>----------------------------------</td>
</tr>
<tr>
<td>2.10</td>
<td>Karnaugh Map: Need, K-map for 2 variable, 3 variable and 4 variable Boolean expression.</td>
<td>Teaching, examples and exercises</td>
</tr>
<tr>
<td>2.11</td>
<td>Simplification of Boolean expression using K-map and realization of logic circuit for 2 and 3 variable.</td>
<td>Teaching, examples and exercises</td>
</tr>
<tr>
<td>2.12</td>
<td>Simplification of Boolean expression using K-map and realization of logic circuit for 4 variable</td>
<td>Teaching, examples and exercises</td>
</tr>
</tbody>
</table>

UNIT –3: ARITHMETIC CIRCUITS (9Hr)

<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
<th>Teaching, examples and exercises</th>
<th>Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Features of combinational circuits and examples.</td>
<td>Teaching, examples and exercises</td>
<td>1:0</td>
</tr>
<tr>
<td></td>
<td>Half adder (HA): Concept, truth-table, logical expression, gate-level implementation and application.</td>
<td>Teaching, examples and exercises</td>
<td>1:0</td>
</tr>
<tr>
<td>3.2</td>
<td>Full adder (FA): Concept, truth-table, logical expression, gate-level implementation and application. List of FA ICs.</td>
<td>Teaching, examples and exercises. Hands-on demonstration/practice FA using gates</td>
<td>1:1</td>
</tr>
<tr>
<td>3.3</td>
<td>Half Subtractor (HS): Concept, truth-table, logical expression, gate-level implementation and application.</td>
<td>Teaching, examples and exercises</td>
<td>1:0</td>
</tr>
<tr>
<td>3.4</td>
<td>Full Subtractor (FS): Concept, truth-table, logical expression, gate-level implementation and application.</td>
<td>Teaching, examples and exercises</td>
<td>1:0</td>
</tr>
<tr>
<td>3.5</td>
<td>Serial & Parallel adders: Concept, comparison & applications.</td>
<td>Teaching, examples and exercises</td>
<td>1:0</td>
</tr>
<tr>
<td>3.6</td>
<td>Three-bit parallel adder circuit: Given the circuit, analyze it’s working.</td>
<td>Teaching, examples and exercises</td>
<td>1:0</td>
</tr>
<tr>
<td>3.7</td>
<td>Two-bit magnitude comparator: Concept, truth-table, logical expression, gate-level implementation and application. Identify ICs</td>
<td>Teaching, examples and exercises. Hands-on demonstration/practice of 2-bit Magnitude Comparator using IC or gate-level circuit.</td>
<td>1:1</td>
</tr>
<tr>
<td>UNIT –4: MULTIPLEXERS AND DEMULTIPLXERS (8 Hr)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.1 Multiplexers (Mux): Concept, relevance and applications, 2:1 Mux: Symbol, truth-table, logical expression, gate-level implementation and application. Identify ICs.</td>
<td>Teaching, examples and exercises</td>
<td>1:0</td>
<td></td>
</tr>
<tr>
<td>4.2 High-order Mux: Concept, examples (4:1, 8:1, and 16:1), Relation between number of inputs and control lines.</td>
<td>Teaching, examples and exercises. Hands-on demonstration/practice: 4:1 using 2:1 Mux or 8:1 using 4:1 Mux, using ICs.</td>
<td>1:1</td>
<td></td>
</tr>
<tr>
<td>4.3 Realization of high-order (4:1) Mux using low-order (2:1) Mux. List Mux ICs.</td>
<td>Teaching, examples and exercises</td>
<td>1:0</td>
<td></td>
</tr>
<tr>
<td>4.4 Realization of logic gates and simple logic equations using multiplexers. (Max. 3 variables)</td>
<td>Teaching, examples and exercises</td>
<td>1:0</td>
<td></td>
</tr>
<tr>
<td>4.5 Demultiplexer (Demux): Concept, relevance and applications. 1:2 Demux: Symbol, truth-table, logical expression, gate-level implementation and application.</td>
<td>Teaching, examples and exercises</td>
<td>1:0</td>
<td></td>
</tr>
<tr>
<td>4.6 High-order Demux: Concept and examples (1:4, 1:8, 1:16), relation between number of outputs and control lines. Analysis of Demux: Given 1:4 Demux, write logical expressions and truth table.</td>
<td>Teaching, examples and exercises Hands-on practice for 1:8 using 1:4 Demux, using ICs</td>
<td>1:1</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>UNIT –5: ENCODERS AND DECODERS (7 Hr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1 Encoders and Decoders: Relevance and applications.</td>
</tr>
<tr>
<td>5.2 Decimal-to-BCD encoder: Logic diagram, working, truth-table and applications. List ICs</td>
</tr>
</tbody>
</table>
5.3 Priority Encoder: Relevance, Logic diagram, working and Truth Table. Identify IC
- Teaching, examples and exercises
- 1:0

5.4 BCD-to-Decimal decoder: Logic diagram, working and truth-table
- Teaching, examples and exercises
- 1:0

5.5 Seven-segment display: Principle and types. Identify ICs for 7-segment display and Decoder.
- Teaching, examples and exercises.
- 1:0

5.6 BCD-to-seven segment decoder: Logic diagram, working and truth table
- Teaching, examples and exercises. Hands-on demonstration/practice on BCD to Seven Segment decoder
- 0:1

UNIT –6: LOGIC FAMILIES (6Hr)

6.1 ICs: Concept, advantages and disadvantages.
- Teaching, examples and exercises
- 1:0

- IC classification: Based on scale of integration. Concept, need and types of logic families

6.2 Logic family specifications: Propagation delay, fan-out, fan-in, power dissipation, noise margin, speed and speed-power product.
- Teaching, examples and exercises.
- Demonstration of IC datasheet interpretation
- 0:1

6.3 IC data sheet: Identify the specifications in typical standard TTL IC

6.4 Features of Standard TTL, CMOS & ECL. Identify TTL/CMOS/ECL NAND gate ICs and compare their specifications.
- Teaching, examples and exercises.
- 1:0

6.5 Interfacing between TTL and CMOS: Need, concept and precautions. Handling of ICs and ESD.
- Teaching, examples and exercises.
- Demonstration of ICs’ handling / placement/removal on IC base/sockets with anti-ESD gloves
- 1:1
SUGGESTED SPECIFICATION TABLE WITH CO’S, HOURS & MARKS.

<table>
<thead>
<tr>
<th>Sl No.</th>
<th>COURSE OUTCOME</th>
<th>UNITS LINKED</th>
<th>TEACHING HOURS</th>
<th>DISTRIBUTION (THEORY MARKS)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>R LEVEL</td>
</tr>
<tr>
<td>1</td>
<td>Identify and apply arithmetic and conversion operations on different number systems</td>
<td>1</td>
<td>08</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>Formulate, simplify and implement simple logic functions</td>
<td>2</td>
<td>14</td>
<td>15</td>
</tr>
<tr>
<td>3</td>
<td>Build/design and analyze various combinational circuits</td>
<td>3,4,5</td>
<td>24</td>
<td>25</td>
</tr>
<tr>
<td>4</td>
<td>Identify and select digital ICs for simple applications</td>
<td>6</td>
<td>06</td>
<td>10</td>
</tr>
</tbody>
</table>

| Cognitive-level marks share (Total) | 52 | 55 | 70 | 75 | 200 |

Legends: R = Remember; U = Understand; A = Apply and above levels (Bloom’s revised taxonomy).

MAPPING OF COS, POS, COGNITIVE LEVELS, LECTURES AND PRACTICES.

<table>
<thead>
<tr>
<th>CO No.</th>
<th>Course Outcome</th>
<th>POs Mapped</th>
<th>Cognitive Level R/U/A</th>
<th>Lecture Sessions in Hrs</th>
<th>Demonstration/Hands-on practice in Hrs</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td>Identify and apply arithmetic and conversion operations on different number systems</td>
<td>1,2,5</td>
<td>R/U/A</td>
<td>08</td>
<td>0</td>
<td>08</td>
</tr>
<tr>
<td>CO2</td>
<td>Formulate, simplify and implement simple logic functions</td>
<td>1,2,3,4</td>
<td>R/U/A</td>
<td>12</td>
<td>2</td>
<td>14</td>
</tr>
<tr>
<td>CO3</td>
<td>Build/design and analyze various combinational circuits</td>
<td>1,2,3,4</td>
<td>3,4,5</td>
<td>18</td>
<td>6</td>
<td>24</td>
</tr>
<tr>
<td>CO4</td>
<td>Identify and select digital ICs for simple applications</td>
<td>1,5</td>
<td>6</td>
<td>04</td>
<td>2</td>
<td>06</td>
</tr>
</tbody>
</table>

| Total | 42 | 10 | 52 |
vii) UNIT SKILL-SETS

<table>
<thead>
<tr>
<th>Unit</th>
<th>Unit Name</th>
<th>Skill Set</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Number Systems and codes</td>
<td>Comprehend the number systems, operate (conversion, addition and subtraction) on different number systems, identify and select the codes for different applications</td>
</tr>
<tr>
<td>2</td>
<td>Boolean Algebra</td>
<td>Translate the problem to truth-table, simplify the logical expressions using Boolean identities/laws/K-maps, and implement the logical functions.</td>
</tr>
<tr>
<td>3</td>
<td>Arithmetic Circuits</td>
<td>Given simple arithmetic problems, solve using digital circuits and vice-versa (analysis). Identify arithmetic circuits ICs for simple applications.</td>
</tr>
<tr>
<td>4</td>
<td>Multiplexers and Demultiplexer</td>
<td>Solve simple multiplexing and demultiplexing problems, vice-versa (analysis). Identify multiplexing ICs for simple multiplexing applications.</td>
</tr>
<tr>
<td>5</td>
<td>Encoders and Decoders.</td>
<td>Solve simple coding/decoding problems, and identify coding ICs for simple coding applications.</td>
</tr>
<tr>
<td>6</td>
<td>Logic Families</td>
<td>Identify and select the ICs from different IC families based-on application specifications.</td>
</tr>
</tbody>
</table>

viii) MAPPING BETWEEN COs AND POs

<table>
<thead>
<tr>
<th>Course</th>
<th>COs</th>
<th>Programme Outcomes (POs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Digital Electronics</td>
<td>C01</td>
<td>3 2 0 0 1 0 0</td>
</tr>
<tr>
<td></td>
<td>C02</td>
<td>3 2 1 1 0 0 0</td>
</tr>
<tr>
<td></td>
<td>C03</td>
<td>3 2 1 2 0 0 0</td>
</tr>
<tr>
<td></td>
<td>C04</td>
<td>3 0 0 0 1 0 0</td>
</tr>
</tbody>
</table>
ix) SUGGESTED LEARNING RESOURCES:

Reference Books

Web-based/onlineResources

1. https://www.electronics-tutorials.ws/
2. https://learn.sparkfun.com/
7. https://learn.adafruit.com/

x) Major Equipment/Instruments

1. Digital trainer kits.
2. Electronics simulation software’s.
4. IC tester, logic probes.
xi) SUGGESTED LIST OF STUDENTS ACTIVITIES for CIE

Note: The following activities or similar activities (as suggested by teacher/identified by student in coordination with teacher) for assessing CIE (IA) for 20 marks (any one)

1. Simulate the working of a logic circuit using a suitable software tool.
2. Performing hands-on practice on design and simulation of digital circuits.
3. Motivate students to take case study on different ASICs (Application specific ICs) digital circuits to inculcate self and continuous learning.
4. Open end activities like
 - Simulate a realistic digital circuit containing combination of logic gates.
 - Collect the specification sheets of various logic ICs & prepare a Report.
 - Record the best practices used in the disposal of E-waste and Precautions in the operation of digital systems.
5. Draw the pin diagram of IC’s used for (a) Basic Gates (b) Combinational circuits.
6. Realize higher order Multiplexers/Demultiplexer using lower order
 Multiplexers/Demultiplexer and experiment them under simulated environment.
7. Collect the real-world applications where combinational digital circuits are involved.

Execution Mode

- Maximum of 4 students in each batch.
- Write qualitative report not exceeding 8 pages; one report per batch.
- Each of the activity can be carried off class, and shall be presented to the teacher using suitable presentation mode
- Assessment shall be made based on quality of activity presentation/demonstration and report (Equal weightage for Information collection/Application, execution, report, and presentation and role in team) or the rubrics table may be followed for assessment purpose.

xii) COURSE ASSESSMENT AND EVALUATION CHART

<table>
<thead>
<tr>
<th>Sl. No</th>
<th>Assessment</th>
<th>Mode</th>
<th>Schedule</th>
<th>Duration (Minutes)</th>
<th>Max. marks</th>
<th>Conversion of Max Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>CIE-IA1</td>
<td>Written-test</td>
<td>3 Week</td>
<td>80</td>
<td>30</td>
<td>A=(IA1+IA3+IA6)/3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Max. of A is 30</td>
</tr>
<tr>
<td>2</td>
<td>CIE-IA2</td>
<td>MCQs/Quiz</td>
<td>5 Week</td>
<td>60</td>
<td>20</td>
<td>B=(IA2+IA4+IA5)/3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Max. of B is 20</td>
</tr>
<tr>
<td>3</td>
<td>CIE-IA3</td>
<td>Written-test</td>
<td>7 Week</td>
<td>80</td>
<td>30</td>
<td>A+B=50</td>
</tr>
<tr>
<td>4</td>
<td>CIE-IA4</td>
<td>Open-Book</td>
<td>9 Week</td>
<td>60</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Written-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
RUBRICS FOR ACTIVITY

<table>
<thead>
<tr>
<th>Dimension</th>
<th>Beginning</th>
<th>Developing</th>
<th>Satisfactory</th>
<th>Good</th>
<th>Exemplary</th>
<th>Student Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Collection of data</td>
<td>4</td>
<td>8</td>
<td>12</td>
<td>16</td>
<td>20</td>
<td>8</td>
</tr>
<tr>
<td>Does not collect any info.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>relating to the topic</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Collects very limited info.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>; some relate to the topic</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Collects much info.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>; but very limited relate</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>to the topic</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Collects some basic info.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>; most refer to the topic</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Collects a great deal of info.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>; all refer to the topic</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fulfill team's roles & duties</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Does not perform any duties assigned to the team role</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>Performs very little duties but unreliable.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Performs very little duties</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Performs nearly all duties</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Performs all duties of assigned team roles</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shares work equally</td>
<td>Always relies on others to do the work</td>
<td>Rarely does the assigned work; often needs reminding</td>
<td>Usually does the assigned work; rarely needs reminding</td>
<td>Normally does the assigned work</td>
<td>Always does the assigned work without having to be reminded.</td>
<td>8</td>
</tr>
<tr>
<td>Listen to other Team mates</td>
<td>Is always talking; never allows anyone else to speak</td>
<td>Usually does most of the talking; rarely allows others to speak</td>
<td>Talks good; but never show interest in listening others</td>
<td>Listens, but sometimes talk too much</td>
<td>Listens and speaks a fair amount</td>
<td>8</td>
</tr>
</tbody>
</table>

Average / Total Marks: \((8+6+8+8)/4\) \(= 7.5 \text{ marks}\)

xiii) **Model Question Paper I A Test (CIE)**

<table>
<thead>
<tr>
<th>Programme:</th>
<th>Semester: I</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course Code</td>
<td>Max Marks :30</td>
</tr>
<tr>
<td>Name of the course coordinator:</td>
<td>Duration : 1 Hr. 20minutes</td>
</tr>
<tr>
<td>Test : I/II/III</td>
<td></td>
</tr>
</tbody>
</table>

Note: Answer one full question from each section. One full question carries 10 marks.

<table>
<thead>
<tr>
<th>Qn. No</th>
<th>Question</th>
<th>C</th>
<th>L</th>
<th>O</th>
<th>P</th>
<th>Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Section -1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.a)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>c)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.a)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>c)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Section -2						
3.a)						
b)						
c)						
4.a)						
b)						
c)						
Model Question Paper

Section-3

<table>
<thead>
<tr>
<th>Qn. No</th>
<th>Question</th>
<th>CL</th>
<th>CO</th>
<th>Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.a)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>c)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.a)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>c)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Instruction to the Candidate: Answer one full question from each section. One full question carries 20 marks.
<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>5.a)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>b)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.a)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>b)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Section-4

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>7.a)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>b)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.a)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>b)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Section-5

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>9.a)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>b)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.a)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>b)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Government of Karnataka
Department of Collegiate and Technical Education
Board of Technical Examinations, Bangalore

<table>
<thead>
<tr>
<th>Course Code</th>
<th>20SC02P</th>
<th>Semester</th>
<th>I/II</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course Title</td>
<td>STATISTICS AND ANALYTICS</td>
<td>Course Group</td>
<td>Core</td>
</tr>
<tr>
<td>No. of Credits</td>
<td>4</td>
<td>Type of Course</td>
<td>Lecture and practice</td>
</tr>
</tbody>
</table>
| Course Category | Practice | Total Contact Hours | 6 Hrs. Per Week
78 Hrs. Per Semester |
| Prerequisites | 10TH LEVEL MATHEMATICS | Teaching Scheme | (L: T:P)-1:0:2 |
| CIE Marks | 60 | SEE Marks | 40 |

RATIONALE

Statistics and analytics help the learner to use the proper methods to collect the data, employ the correct analyses, effectively present the results and conduct research, to be able to read and evaluate journal articles, to further develop critical thinking and analytic skills, to act as an informed consumer and to know when you need to hire outside statistical help. The python language is one of the most accessible programming languages available because it has simplified syntax and not complicated, which gives more emphasis on natural language.

COURSE OUT COMES

At the end of the course, student will be able to

CO1	Understand the tools of data collection, classification and cleaning of data.
CO2	Able to summarize the given statistical data
CO3	Understand the measure of location and dispersion of data.
CO4	Learn the basics of Python programming.
DETAILS OF COURSE CONTENT

The following topics/subtopics is to be taught and assessed in order to develop Unit Skill Sets for achieving CO to attain identified skill sets.

<table>
<thead>
<tr>
<th>UNIT NO</th>
<th>Unit skill set (In cognitive domain)</th>
<th>Topics/Subtopics</th>
<th>Hours L-T-P</th>
</tr>
</thead>
</table>
| UNIT-1 | Statistical data collection and types | 1. Able to collect statistical data.
2. Able to distinguish the data types.
3. Understands the usage of data collection tools
4. Able to specify problem statement for data collection
5. Able to collect data pointing the root cause of the problem statement. | a) Definition of data and classification (qualitative quantitative discrete and continuous data).
b) Data collection tools
iv) Questionnaires.
v) Survey.
v) Interviews.
vii) Focus group discussion.
1.3 Data cleaning. | 4-0-8 |
| | Unit-2 | 6. Sketches bar, pie and histograms on Microsoft Excel spread sheet.
7. Sketches frequency curve and frequency polygon for the data set on Microsoft Excel spread sheet.
8. Sketches bar, pie and histograms on Microsoft Excel spread sheet | a) Descriptive statistics
viii) Datatabulation(frequency table
ix) Relative frequency table.
b) Grouped data
x) Bar graph
xi) Pie chart
xii) Line graph
xiii) Frequency polygon
xiv) Frequency curve
xv) Relative frequency polygon
xvi) Histograms
xvii) Box plot
xviii) Leaf-stem plot | 8-0-16 |

To be done in Microsoft excel.
<table>
<thead>
<tr>
<th>UNIT-3</th>
<th>MEASURE OF LOCATION AND DISPERSION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ø</td>
<td>Able to determine the descriptive statistical variables using Microsoft Excel.</td>
</tr>
<tr>
<td>Ø</td>
<td>Able to determine the absolute measures of dispersion of the given data set.</td>
</tr>
<tr>
<td>Ø</td>
<td>Explain the symmetry and asymmetry of the distributed data.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>UNIT-4</th>
<th>INTRODUCTION TO PYTHON PROGRAMMING</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ø</td>
<td>Able to read data from a text file using Python.</td>
</tr>
<tr>
<td>Ø</td>
<td>Learn variable declarations in Python.</td>
</tr>
<tr>
<td>Ø</td>
<td>Learn control structures.</td>
</tr>
</tbody>
</table>

9. Sketches frequency curve and frequency polygon for the data set on Microsoft Excel spread sheet.

a. Determination of central tendencies Range, Mean, Mode and Median for the data in Microsoft Excel.
b. Determination of absolute measures of dispersion for data like range quartile deviation, mean deviation, standard deviation and variance in Microsoft Excel.
c. Skewness and kurtosis graphs in Microsoft Excel and interpretations of results.

4.1 Introduction to PYTHON.
4.2 Syntax of PYTHON.
4.3 Comments of PYTHON.
4.4 Data types of PYTHON.
4.5 Variables of PYTHON.
4.6 If-else in PYTHON.
4.7 Arrays and functions in PYTHON.
<table>
<thead>
<tr>
<th></th>
<th>Learn loop constructs.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>SL NO</td>
<td>Practical outcomes/Practical exercises</td>
</tr>
<tr>
<td>-------</td>
<td>---</td>
</tr>
<tr>
<td>1</td>
<td>Prepare a questionnaire (closed end) containing 25 questions for a specified problem statement: for example experience of an individual in a restaurant.</td>
</tr>
<tr>
<td>2</td>
<td>Prepare a Google form for a specified problem statement to collect the dataset. (for example questionnaire to conduct online quiz)</td>
</tr>
<tr>
<td>3</td>
<td>Send out a survey on your problem statement to number of 50 (By Google forms) and collect the data.</td>
</tr>
<tr>
<td>4</td>
<td>Remove duplicate or irrelevant observations. Remove unwanted observations from the dataset provided, including duplicate observations or irrelevant observations.</td>
</tr>
<tr>
<td>5</td>
<td>In Microsoft Excel spread sheet draw the frequency distribution table for the given data (data set should contain minimum 50 data).</td>
</tr>
<tr>
<td>6</td>
<td>In Microsoft Excel spread sheet draw the relative frequency distribution table for the given data (data set should contain minimum 50 data).</td>
</tr>
<tr>
<td>7</td>
<td>Using Microsoft Excel spread sheet plot bar graph for the data collected from 100 people(for example, conduct a survey on the favorite fruit of a person in your locality(restricting to 5 to 6 fruits). Explain the bar graph with minimum 30 words.</td>
</tr>
<tr>
<td>8</td>
<td>Using Microsoft Excel spread sheet plot pie chart for the data collected from 50 people(for example, conduct a survey on the smokers with respect to their ages in your locality. Explain the pie chart with minimum 30 words.</td>
</tr>
<tr>
<td>9</td>
<td>Using Microsoft Excel spread sheet draw a line graph for the given dataset.</td>
</tr>
<tr>
<td>10</td>
<td>Using Microsoft Excel spread sheet draw frequency polygon and frequency curve for the data collected from 50 people. (For example, marks obtained by the students in your class in 5 subjects in previous examination). Explain your observations from the graph in minimum 30 words.</td>
</tr>
<tr>
<td>11</td>
<td>Using Microsoft Excel spread sheet construct a box plot for the given dataset. (For example dataset can be the number of passengers in a flat form at different time in a day).</td>
</tr>
<tr>
<td>12</td>
<td>Using Microsoft Excel spread sheet construct a leaf plot for the given dataset. Explain the graph with minimum 30 words.</td>
</tr>
</tbody>
</table>
Using Microsoft Excel spread sheet find the Mean, Mode and Median for the data (univariate data) given and also represent them in a Histogram.

<table>
<thead>
<tr>
<th>No.</th>
<th>Description</th>
<th>Marks</th>
<th>Data</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>13</td>
<td>Using Microsoft Excel spread sheet find the Mean, Mode and Median for the data (univariate data) given and also represent them in a Histogram.</td>
<td>3</td>
<td>1,2,4,5,7</td>
<td>0:0:2</td>
</tr>
<tr>
<td>14</td>
<td>Generate a 50 random data sample (even and odd number dataset) using Microsoft Excel spread sheet and determine the range and Quartiles.</td>
<td>3</td>
<td>1,2,4,5,7</td>
<td>0:0:2</td>
</tr>
<tr>
<td>15</td>
<td>Collect the current yield of a crop from 50 different persons (problem statement can be changed according to priorities of the tutor) in your locality and determine mean deviation and Quartile deviation in Microsoft excel spread sheet and brief your inference with less than 30 words.</td>
<td>3</td>
<td>1,2,4,5,7</td>
<td>0:0:2</td>
</tr>
<tr>
<td>16</td>
<td>Collect the data of any 2 livestock population from 50 different houses in your locality (problem statement can be changed according to priorities of the tutor) and determine standard deviation for both the two separately in Microsoft excel spread sheet and brief your inference with less than 30 words.</td>
<td>3</td>
<td>1,2,4,5,7</td>
<td>0:0:2</td>
</tr>
<tr>
<td>17</td>
<td>Collect the data of two wheeler (with a rider and a pillion) crossing a busy junction in your locality in the peak hours (problem statement can be changed according to priorities of the tutor) and determine the variance of the data in Microsoft excel spread sheet and brief your inference with less than 30 words.</td>
<td>3</td>
<td>1,2,4,5,7</td>
<td>0:0:2</td>
</tr>
<tr>
<td>18</td>
<td>Using Microsoft Excel spread sheet draw a Skewness graph and kurtosis graph for randomly generated dataset.</td>
<td>3</td>
<td>1,2,4,5,7</td>
<td>0:0:2</td>
</tr>
<tr>
<td>20</td>
<td>Write a python program to add 2 integers and 2 strings and print the result.</td>
<td>4</td>
<td>1,2,4,5,7</td>
<td>0:0:2</td>
</tr>
<tr>
<td>21</td>
<td>Write a python program to find the sum of first 10 natural numbers.</td>
<td>4</td>
<td>1,2,4,5,7</td>
<td>0:0:2</td>
</tr>
<tr>
<td>22</td>
<td>Write a python program to find whether the number is odd or even.</td>
<td>4</td>
<td>1,2,4,5,7</td>
<td>0:0:2</td>
</tr>
<tr>
<td>23</td>
<td>Write a python program to find the variance and standard deviation for the given data.</td>
<td>4</td>
<td>1,2,4,5,7</td>
<td>0:0:2</td>
</tr>
<tr>
<td>24</td>
<td>Write a python program to display student marks from the record.</td>
<td>4</td>
<td>1,2,4,5,7</td>
<td>0:0:2</td>
</tr>
<tr>
<td>25</td>
<td>Write a python program to create a labeled bar graph using matplotlib. pyplot.</td>
<td>4</td>
<td>1,2,4,5,7</td>
<td>0:0:2</td>
</tr>
<tr>
<td>26</td>
<td>Write a python program to create a labeled pie chart using matplotlib. pyplot.</td>
<td>4</td>
<td>1,2,4,5,7</td>
<td>0:0:2</td>
</tr>
</tbody>
</table>

Total Hours

\[
\text{Total Hours} = 0:0:52 = 52/2 = 26\]
MAPPING OF CO WITH PO

<table>
<thead>
<tr>
<th>CO</th>
<th>Course Outcome</th>
<th>PO Mapped</th>
<th>Experiment Linked</th>
<th>Cognitive Level</th>
<th>Tutorial & Practical Sessions in Hrs.</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td>Understand the tools of data collection, classification and cleaning of data.</td>
<td>1,2,4,5,7</td>
<td>1-4</td>
<td>A</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>CO2</td>
<td>Able to summarize the given statistical data</td>
<td>1,2,4,5,7</td>
<td>5-12</td>
<td>A</td>
<td>33</td>
<td>33</td>
</tr>
<tr>
<td>CO3</td>
<td>Understand the measure of location and dispersion of data.</td>
<td>1,2,4,5,7</td>
<td>13-18</td>
<td>A</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>CO4</td>
<td>Learn the basics of Python programming.</td>
<td>1,2,4,5,7</td>
<td>19-26</td>
<td>A</td>
<td>21</td>
<td>21</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course</th>
<th>CO’s</th>
<th>Programme Outcomes (PO’s)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Statistics & Analytics</td>
<td>CO1</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>CO2</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>CO3</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>CO4</td>
<td>3</td>
</tr>
</tbody>
</table>

Level 3- Highly Mapped, Level 2-Moderately Mapped, Level 1-Low Mapped, Level 0- Not Mapped
SUGGESTED LEARNING RESOURCES:

1. Statistical Analysis with Excel For Dummies (For Dummies Series) Paperback Import, 9 April 2013 by [Joseph Schmuller](#) (Author)
7. PYTHON PROGRAMMING: Python programming: the ultimate guide from a beginner to expert by Clive Campbell.
8. Open source for python: https://hub.gke2.mybinder.org/user/jupyterlab-jupyterlab-demo-zfkwy4y/lab

SUGGESTED LIST OF STUDENT ACTIVITY

Note: The following activities or similar activities for assessing CIE (IA) for 10 marks (Any one)

<table>
<thead>
<tr>
<th>Activity</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Describe the data collection activity itself (interviews, surveys, library research, etc.) AND why this specific form of data collection was chosen. Be sure to explain why you think this kind of data will help you in your design process. Also be sure to provide details about the activity: how many interviews, how long they took, where they took place, how many questions asked in a survey, how many respondents, etc. Present the results of your data collection. You do not have to have completely analyzed all your data, but do make sure you present the results of your research. If you did a survey, please attach a copy of the survey as an appendix; if you did interviews, please attach a copy of the interview questions. Discuss any preliminary analysis of your data. What have you learned thus far from the data should be discussed from an analytical perspective (rather than a data dump). For example, if you surveyed people about their use of the local bus system, and 90% of your respondents said they take the bus when it is raining, and 60% of your respondents said they usually wait more than 10 minutes for a bus, think about what this teaches you rather than just the information itself. In this instance, you can see that people are generally waiting for several minutes in the rain for a bus, so a covered bus stop might be a good idea. Keep in mind that your findings from data should lead directly to the conclusions you make about your design recommendations. This is the time to begin thinking very specifically about your research in those terms. This is also an opportunity to think about your definition of “better” and how it applies to your design goals and your choice of research activities (for example, if you are choosing to make something better by making it cheaper, maybe you are interviewing people to see how much loss of functionality or decrease in features a technology they are willing to tolerate).</td>
</tr>
<tr>
<td>2</td>
<td>https://ils.unc.edu/courses/2013_spring/inls541_001/Assignments.html#Assignment_9</td>
</tr>
</tbody>
</table>
3. Download a dataset from the above link and use data visualization tools to analyze it.

Acquire the dataset from https://www.kaggle.com/datasets (For example, acquire the data of IPL ball by ball scores and find the standard deviation and variance of score of a batsmen) and clean the data for the root cause of the problem statement and summarize the date and explain the inference.

COURSE ASSESSMENT AND EVALUATION CHART

<table>
<thead>
<tr>
<th>Method</th>
<th>What</th>
<th>To whom</th>
<th>When/Where (Frequenc y in the course)</th>
<th>Max Marks</th>
<th>Evidence collected</th>
<th>Course outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>DIRECT ASSESSMENT</td>
<td>CIE (Continuous Internal Evaluation)</td>
<td>Models</td>
<td>Students</td>
<td>Two IA Tests (Written)</td>
<td>20</td>
<td>Blue Book</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Three Skill tests</td>
<td>20</td>
<td>Model</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Student Activity</td>
<td>20</td>
<td>Model/Report</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>TOTAL</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td>INDIRECT ASSESSMENT</td>
<td>SEE (Semester End Examination)</td>
<td>End Exam</td>
<td>Students</td>
<td>End of the course</td>
<td>100</td>
<td>Models</td>
</tr>
<tr>
<td></td>
<td>Student Feedback on course</td>
<td>Students</td>
<td>Students</td>
<td>Middle of the course</td>
<td>Feedback forms</td>
<td>1,2,3, Delivery of course</td>
</tr>
<tr>
<td></td>
<td>End of Course Survey</td>
<td>Students</td>
<td></td>
<td>End of the course</td>
<td>Questionnaires</td>
<td>1,2,3 Effectiveness of Demonstrations & Assessment Methods</td>
</tr>
<tr>
<td>Sl.No</td>
<td>Assessment</td>
<td>Duration</td>
<td>Max marks</td>
<td>Conversion</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>---</td>
<td>------------------</td>
<td>-----------</td>
<td>-----------------------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>CIE Assessment 1 (Written Test -1-theory)</td>
<td>60 minutes</td>
<td>20</td>
<td>Average of two written tests 20</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- At the end of 3<sup>rd</sup> week</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>CIE Assessment 2 (Written Test -2-theory)</td>
<td>60 minutes</td>
<td>20</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- At the end of 13<sup>th</sup> week</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>CIE Assessment 3 (Skill test)</td>
<td>3 Hrs</td>
<td>20</td>
<td>Average of three skill tests 20</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- At the end of 5<sup>th</sup> week</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>CIE Assessment 4 (Skill test)</td>
<td>3 Hrs</td>
<td>20</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- At the end of 7<sup>th</sup> week</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>CIE Assessment 5 (Skill test)</td>
<td>3 Hrs</td>
<td>20</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- At the end of 9<sup>th</sup> week</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>CIE Assessment 6 (Student activity)</td>
<td>-</td>
<td>20</td>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- At the end of 11<sup>th</sup> week</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Total Continuous Internal Evaluation (CIE) Assessment</td>
<td></td>
<td>60</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Semester End Examination (SEE) Assessment</td>
<td>3Hrs</td>
<td>100</td>
<td>40</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(Practical Test)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total Marks 100

Note:

1. CIE written test is conducted for 20 marks (Two sections). Each section shall have two full questions of same CL, CO. Student shall answer one full question (10 marks) from each section.

2. CIE Skill test is conducted for 100 marks (3 Hours duration) as per scheme of evaluation and the obtained marks are scaled down to 20 marks.

3. SEE is conducted for 100 Marks (3 Hours duration) as per scheme of evaluation.
MODEL QUESTION PAPER
CIE, SKILL TEST AND SEMESTER END EXAMINATION

Course & Programme: Common to all Engineering Programmes.
Subject: Statistics and Analytics Practice
Course Code : 20SC21P

Semester: II
Max Marks: 100
Duration : 3Hrs

Instruction to the Candidate: Answer both questions

<table>
<thead>
<tr>
<th>Qn.No</th>
<th>Question</th>
<th>CL</th>
<th>CO</th>
<th>PO</th>
<th>Marks</th>
</tr>
</thead>
</table>
| 1 | 1. For the given ungrouped data set plot the bar graph by grouping the data in Microsoft excel spread sheet and interpret the obtained results. (Dataset, bar graphs and interpretation have to be entered in the answer script).
 | OR
 | Generate a random data set in Microsoft excel spread sheet containing 50 data and find the mean mode and median in Microsoft excel spread sheet and interpret the obtained results. (Dataset, bar graphs and interpretation have to be entered in the answer script). | A | 2,3 | 1,2,4,5,7 | 50 |
| 2 | 2. Write the python program to enter two integers and two strings and to print the sum two integers and two strings. | A | 4 | 1,2,4,5,7 | 50 |

Questions are not framed from Unit 1 in the final SEE. Short questions can only be asked from that unit.

SCHEME OF EVALUATION FOR BOTH CIE AND SEE

<table>
<thead>
<tr>
<th>Sl. No</th>
<th>Particulars</th>
<th>Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Short questions from Unit 1</td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td>Observation</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>3</td>
<td>Conduction</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Output and Interpretation of result</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Viva-voce</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td></td>
</tr>
</tbody>
</table>

EQUIPMENT LIST

FOR STATISTICS AND DATA ANALYTICS LAB

2 laboratories. Each containing 30 computers (Desktop) with the following system requirements.

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>SL NO</td>
<td>REQUIREMENTS</td>
<td>MINIMUM</td>
<td>RECOMMENDED</td>
</tr>
<tr>
<td>1</td>
<td>RAM</td>
<td>4GB FOR FREE RAM</td>
<td>8GB OF TOTAL SYSTEM RAM</td>
</tr>
<tr>
<td>2</td>
<td>DISK SPACE</td>
<td>2.5 GB AND 1 GB FOR CACHES</td>
<td>SSD DRIVE WITH AT LEAST 5 GB OF FREE SPACE</td>
</tr>
<tr>
<td>3</td>
<td>MONITOR RESOLUTION</td>
<td>1024x768</td>
<td>1920x1080</td>
</tr>
<tr>
<td>4</td>
<td>OS(OPERATING SYSTEM)</td>
<td>OFFICIALLY RELEASED 64-BIT VERSIONS OF THE FOLLOWING: MICROSOFT WINDOWS 8 OR LATER</td>
<td>LATEST 64-BIT VERSION OF WINDOWS</td>
</tr>
</tbody>
</table>
1. COURSE RATIONALE:
Engineering Drawing is an effective language of engineers. It is the foundation block which strengthens the engineering & technological structure. Moreover, it is the transmitting link between ideas and realization.

2. LIST OF COMPETENCIES:
The course content should be taught and implemented with the aim to develop different types of skills leading to the achievement of the following competencies:
1. Prepare engineering drawings both manually and using CAD with given geometrical dimensions using prevailing drawing standards and drafting instruments.
2. Visualize the shape of simple object from orthographic views and vice versa

3. COURSE OUT COMES:

<table>
<thead>
<tr>
<th>CO1</th>
<th>Adopt the standards, dimensioning and construct appropriate drawing scales, in technical drawing development.</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO2</td>
<td>Visualize objects in all planes and learn displaying techniques for graphical communication in design process.</td>
</tr>
<tr>
<td>CO3</td>
<td>Sketch orthographic projections into isometric projections and vice versa.</td>
</tr>
<tr>
<td>CO4</td>
<td>Use computer software and Apply computer aided drafting tools to create 2D /3 D engineering drawings</td>
</tr>
</tbody>
</table>

4. INSTRUCTIONAL STRATEGY:
1. Teacher should show model of real of the component/part whose drawing is to be made. Emphasis should be given on cleanliness, dimensioning and layout of sheet.
2. Focus should be on proper selection of drawing instruments and their proper use.
3. The institute should procure AutoCAD or other engineering graphics software for practice in engineering drawings.
4. Separate labs for practice on Engineering graphics Software should be established.
5 COURSE DETAILS:
The following topics/sub topics is to be taught and assessed in order to develop Unit Skill sets for achieving CO to attain identified skill sets

<table>
<thead>
<tr>
<th>Unit</th>
<th>Major Learning Topics and Sub-Topics</th>
<th>Outcomes (in cognitive domain)</th>
<th>Hours</th>
</tr>
</thead>
</table>
| UNIT-1 Basic elements of Drawing | 1.1 List the different drawing instruments and application
1.2 Convention of lines and its application (Thick, Thin, Axis etc.)
1.3 Practice use of drawing instruments
1.4 Representative fraction Scales - Full Scale, Reduced Scale and Enlarged Scale
1.6 Dimensioning a) Aligned system and Unidirectional system in the Sketches
b) Chain dimensioning and Parallel dimensioning
1.7 Construct different polygons | 1. Drawing equipment's, instruments and materials.
2. Equipment's-types, specifications, method to use them, applications.
3. Instruments-types, specifications, methods to use them and applications.
4. Pencils-grades, applications, Different types of lines.
5. Scaling technique used in drawing.
7. Constructions of geometrical figures | 4-0-8 |
| UNIT-2 CAD Interface | 22.1 Introduction to CAD- Hardware requirements.
2.2 Various CAD software available
2.3 Familiarization of CAD window - Commands like New file, Saving the file, opening an existing drawing file, Creating templates
2.4 Setting up new drawing: Units, Limits, Grid, Snap. Standard sizes of sheet.
2.5 Selecting Various plotting parameters such as Paper size, paper units, drawing orientation, plot scale, plot offset, plot area, print preview | 1. CAD-Definition-Importance.
2. Familiarization with CAD Environment and utilities.
3. Setting up layout in CAD software’s by taking plotting parameters | 4-0-8 |
| UNIT-3 Exposure to CAD Commands | 3.1 Draw basic entities like Line, Circle, Arc, Polygon, Ellipse, Rectangle, Multiline, Dimensioning, Inserting text Applying constraints - horizontal, vertical, parallel, concentric, perpendicular, symmetric equal, collinear
3.2 Insert title block for the drawing and take the Print out
3.3 Create objects by applying constraints and convert the objects to full scale, reduced scale and enlarged scale
3.4 Apply copy, mirroring, array, fillet and trim on the object created | 1. Computer graphics & its terminology.
2. CAD definition, concept & need.
3. Commands used in CAD
4. Functional areas of CAD. - Coordinate systems.
5. Familiarization of Cad commands
6. Draw simple Geometrical figures using CAD | 6-0-12 |
| UNIT-4 Orthographic projections | 4.1 Introduction to orthographic projection
4.2 Conversion of pictorial view into Orthographic Views | 1. Types of projections-orthographic concept and applications.
2 Various term associated | 4-0-8 |
6. LIST OF PRACTICAL EXERCISES:

The exercises/practical/experiments should be properly designed and implemented with an attempt to develop different types of skills leading to the achievement of the competency. Following is the list of exercises/practical/experiments for guidance.

<table>
<thead>
<tr>
<th>Sr. No</th>
<th>Unit No.</th>
<th>Practical Exercises (Outcomes in Psychomotor Domain)</th>
<th>Hours</th>
</tr>
</thead>
</table>
| 1 | 1 | 1. Teacher will demonstrate a: Use of a. Drawing instruments.
2. Planning and layout as per IS.
3. Scaling technique.
2. Draw following.
Problem – 1 Drawing horizontal, vertical, 30 degree, 45 degree, 60 & 75 degrees lines using Tee and Set squares/ drafter. (Sketch book)
Problem – 2 Indicate different convention of lines on the drawing. (SketchBook)
Problem – 3 Copy the sketch to the required scale and dimensioning adopting right system and positioning of dimensions using Tee and Set squares / drafter. (SketchBook) | 1-0-2 |

TOTAL 26-0-52
Problem 4. Draw regular geometric constructions Pentagon, Hexagon, Square, circle, Triangle and other shapes. (SketchBook) 1-0-2

2 2 Use of CAD commands, plotting the drawing 4-0-8

3 3 Problem 5: Drawing basic entities: Circle, Arc, Polygon, Ellipse, Rectangle, Multiline 6-0-12

4 4 Problem 6: Draw Orthographic views for the given object. (CAD Drawing) (Minimum 5 Problems) 4-0-8

5 5 Problem 7: Draw Isometric projections for the given Orthographic views(CAD Drawing) (Minimum 5 Problems) 4-0-8

6 6 Problem 8: Produce Orthographic (2D) Drawings in CAD – Chap 3 Problem 14: Produce Isometric and 3D Drawings in CAD – Chap 4 (CAD Drawings and Printout) (Minimum 5 Problems) 2-0-4

Problem 9: create 3D models of Program specific Elements such as Panel box (Minimum 3 Problems related to Program specific)) (CAD Drawings and Printout) 2-0-4

TOTAL 26-0-52

1 Theory & practice should be in first angle projections and IS codes should be followed wherever applicable.
2 The dimensions of line, axes, distances, angle, side of polygon, diameter, etc. must be varied for each student in batch so that each student will have same problems, but with different dimensions.
3 The sketchbook has to contain data of all problems, solutions of all problems and student activities performed.
4 Students activities are compulsory to be performed.

7. SUGGESTED LIST OF STUDENT ACTIVITIES:

<table>
<thead>
<tr>
<th>SL.NO.</th>
<th>ACTIVITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Sketch the combinations of set squares to draw angles in step of 15°, 30°, 45°, 60°, 75°, 90°, 105°, 120°, 135°, 150°, 165°, 180°.</td>
</tr>
<tr>
<td>2</td>
<td>Take two simple objects. Sketch isometric of them.</td>
</tr>
<tr>
<td>3</td>
<td>Take two simple objects. Sketch Pictorial orthographic views of them.</td>
</tr>
<tr>
<td>4</td>
<td>Prepare a 2D drawing using AutoCAD and 2D parametric sketcher environment</td>
</tr>
<tr>
<td>5</td>
<td>Prepare 3D solid models using AutoCAD any one mechanical component (Four components)</td>
</tr>
</tbody>
</table>

8. SUGGESTED LEARNING RESOURCES:

9.SOPware/LEARNING WEBSITES:

1. https://www.youtube.com/watch?v=TI4jGyDWtCw
2. https://www.youtube.com/watch?v=dmt6_n7Sgcg
3. https://www.youtube.com/watch?v=MQ5nLXLO0M
4. https://www.youtube.com/watch?v=3WXPanCq9L1
5. https://www.youtube.com/watch?v=fvjk7PlxAuo
6. http://www.me.umn.edu/courses/me2011/handouts/engg%20graphics.pdf
7. https://www.machinedesignonline.com

10. Mapping of Course Outcomes with Programme Outcomes (Suggestive only):

<table>
<thead>
<tr>
<th>Course</th>
<th>CO’s</th>
<th>Programme Outcomes (PO’s)</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Engineering Graphics</td>
<td>CO1</td>
<td></td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>CO2</td>
<td></td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>CO3</td>
<td></td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>CO4</td>
<td></td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Level 3 - Highly Mapped, Level 2 - Moderately Mapped, Level 1 - Low Mapped, Level 0 - Not Mapped

Method is to relate the level of PO with the number of hours devoted to the CO which maps the given PO.

If ≥50% of classroom sessions related to the CO are addressing a particular PO, it is considered that PO is mapped at Level 3.

If 30 to 50% of classroom sessions related to the CO are addressing a particular PO, it is considered that PO is mapped at Level 2.

If 5 to 30% of classroom sessions related to the CO are addressing a particular PO, it is considered that PO is mapped at Level 1.

If < 5% of classroom sessions related to the CO are addressing a particular PO, it is considered that PO is considered not mapped i.e. Level 0.

11. COURSE ASSESSMENT AND EVALUATION CHART:

<table>
<thead>
<tr>
<th>Sl. No</th>
<th>Assessment</th>
<th>Time frame in semester</th>
<th>Duration</th>
<th>Max marks</th>
<th>Conversion</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Portfolio Evaluation of Drawings (CAD Practice Exercises)</td>
<td>Entire Duration</td>
<td>-</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>2</td>
<td>Skill Test-1 (Skill test 1 - Unit-1 & 2)</td>
<td>At the end of 4 week</td>
<td>3 Hrs</td>
<td>100</td>
<td>Average of two skill tests 1 and 2 (Both skill tests are to be reduced to weightage of 20 independently) 20</td>
</tr>
<tr>
<td>3</td>
<td>Skill Test-2 (Skill test 2 is of CAD based-Unit, 3, 4)</td>
<td>At the end of 8 week</td>
<td>3 Hrs</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>SL NO</td>
<td>QUESTIONS</td>
<td>MARKS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>-----------</td>
<td>-------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td>Skill Test-3 (Skill test 3 is of CAD based Unit 5,6)</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>At the end of 13 week</td>
<td>3 Hrs</td>
<td>Skill tests-3 is to be reduced to weightage of 20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td>Total Continuous Internal Evaluation (CIE) Assessment</td>
<td>60</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.</td>
<td>Semester End Examination (SEE) Assessment conducted for 100 marks, finally reduced to 40 marks weightage</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TOTAL 100

Scheme of Valuation for End Examination

<table>
<thead>
<tr>
<th>SL NO</th>
<th>QUESTIONS</th>
<th>MARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Create Orthographic views for the given Pictorial drawing. Indicate all Dimensions and Annotations. (CAD)</td>
<td>50</td>
</tr>
</tbody>
</table>

OR

<table>
<thead>
<tr>
<th>SL NO</th>
<th>QUESTIONS</th>
<th>MARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.</td>
<td>Create Isometric Projections for the given Orthographic views (CAD)</td>
<td>50</td>
</tr>
</tbody>
</table>

TOTAL 100

12. CAD Laboratory and Other Requirements to Conduct Engineering Graphics Course

1. Latest Configuration Computers which can be able to run latest any Computer Aided Drafting Software. (At least One Computer per student in practical session.)-30 no
2. Any latest Authorized Computer Aided Drafting Software (30 user licenses)
3. Plotter of size A2/A3
4. LCD Projector.

MODEL QUESTION BANK (Suggestive only)

1. Draw six horizontal parallel lines of 50 mm long with 10 mm intervals (Fig 1).

2. Draw six vertical parallel lines of 50 mm length with 10 mm intervals (Fig 2).
3. Draw 45° inclined lines (Fig 3).

4. Draw the given types of lines using 0.5 range thickness of line according to the specification (Fig 4).
5. Draw the following Exercises in A4 sheet (Fig 5).
6a) Illustrate the elements of dimensioning with the help of a sketch.

b) Illustrate the dimensioning of given common features: diameter, radius, chord, Arc and angle.

7. Copy the sketch to 1:1 scale and dimension it using Aligned system.

8. Copy the sketch to 1:1 scale and dimension it using unidirectional system with Parallel dimensioning method.

9. Copy the sketch to 1:1 scale and dimension it using Aligned system with Chain dimensioning method.

10. Copy the sketch to 1:1 scale and dimension it using Aligned system with Parallel dimensioning method.

11. Copy the sketch to 1:1 scale and dimension it using unidirectional system with Chain dimensioning method.
12. Copy the sketch to 1:1 scale and dimension it using unidirectional system with Parallel dimensioning method.

ORTHOGONAL PROJECTIONS

1. Draw the three principal views of the component as shown in the figure.
ISOMETRIC PROJECTIONS

1. Draw the isometric view of the machine component whose orthographic views are given below:

1.

2.

3.

4.

5.

6.

7.

8.

9.

All dimensions in mm
2. Draw the isometric Projection of the machine component whose orthographic views are given below:
3. Draw the isometric Projection of the machine component whose orthographic views are given below.

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
4. Draw the isometric View of the machine component whose orthographic views are given below.
Diploma in Electronics & Communications Engineering

Government of Karnataka
Department of Collegiate and Technical Education
Board of Technical Examinations, Bangalore

<table>
<thead>
<tr>
<th>Course Code</th>
<th>20EC01P</th>
<th>Semester</th>
<th>I/II</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course Title</td>
<td>FUNDAMENTALS OF ELECTRICAL & ELECTRONICS ENGINEERING</td>
<td>Course Group</td>
<td>Core</td>
</tr>
<tr>
<td>No. of Credits</td>
<td>4</td>
<td>Type of Course</td>
<td>Lecture & Practice</td>
</tr>
<tr>
<td>Course Category</td>
<td>PC</td>
<td>Total Contact Hours</td>
<td>6Hrs Per Week 78Hrs Per Semester</td>
</tr>
<tr>
<td>Prerequisites</td>
<td>Basic Science</td>
<td>Teaching Scheme</td>
<td>(L:T:P) = 1:0:2</td>
</tr>
<tr>
<td>CIE Marks</td>
<td>60</td>
<td>SEE Marks</td>
<td>40</td>
</tr>
</tbody>
</table>

1. RATIONALE
Fundamentals of Electrical and Electronics Engineering is essential for all streams of diploma engineering to work in any industry as it covers basic electrical safety, troubleshooting and repairing of simple electrical systems. Basic knowledge of electrical wiring circuits, protective devices, electrical machines and basic electronics devices is required to work in any engineering field.

2. COURSE SKILL SET
The aim of the course is to help the student to attain the following industry identified competency through various teaching – learning experiences
1. Perform and test domestic wiring
2. Can operate electrical machine
3. Test different electronics devices

3. INSTRUCTIONAL STRATEGY
1. Expose to different learning tools used in respective labs, Operational safety and Procedure to be followed in the laboratory.
2. Instructor should give examples from daily routine as well as, engineering/technology applications on various concepts and principles in each topic so that students are able to understand and grasp these concepts and principles. In all contents, SI units should be followed.
3. Activity- Theory - Demonstrate/practice approach may be followed throughout the course so that learning may be skill and employability based.

4. COURSE OUT COMES
On successful completion of the course, the students will be able to

<table>
<thead>
<tr>
<th>CO1</th>
<th>Comply with the safety procedures</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO2</td>
<td>Apply the fundamentals of electricity.</td>
</tr>
<tr>
<td>CO3</td>
<td>Install and test electrical wiring system.</td>
</tr>
<tr>
<td>CO4</td>
<td>Identify and Operate electrical machines, Batteries and UPS.</td>
</tr>
</tbody>
</table>
Identify and test the different electronic devices.

5. COURSE TOPICS:

<table>
<thead>
<tr>
<th>Unit No</th>
<th>Unit Name</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Electrical Safety</td>
<td>6</td>
</tr>
<tr>
<td>2</td>
<td>Electrical Fundamentals</td>
<td>15</td>
</tr>
<tr>
<td>3</td>
<td>Protective Devices and Wiring circuits</td>
<td>15</td>
</tr>
<tr>
<td>4</td>
<td>Electric Machines and Batteries and UPS</td>
<td>15</td>
</tr>
<tr>
<td>5</td>
<td>Introduction to Electronic Devices and Digital Electronics</td>
<td>27</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>78Hr</td>
</tr>
</tbody>
</table>

6. COURSE CONTENT

The following topics/sub topics is to be taught and assessed in order to develop Unit Skill sets for achieving CO to attain identified skill sets

<table>
<thead>
<tr>
<th>Sl No</th>
<th>Unit skill set (In cognitive domain)</th>
<th>Topics/Sub topics</th>
<th>Practical</th>
<th>Hours L-T-P</th>
</tr>
</thead>
</table>
| 1 | Comply with the Electrical safety | 1. Electrical Symbols
2. Electrical safety
• Identify Various types of safety signs and what they mean
• Demonstrate and practice use of PPE
• Demonstrate how to free a person from electrocution
• Administer appropriate first aid to victims, bandaging, heart attack, CPR, etc.
• Fire safety, causes and precautionary activities.
• Use of appropriate fire extinguishers on different types of fires.
• Demonstrate rescue techniques applied during fire hazard, correct method to move injured people during emergency
• Inform relevant authority about any abnormal situation
• Earthing: Types
1. Electrical symbols related to electrical engineering.
2. Electrical safety
3. Electrical earthing | 02-00-04 |
<table>
<thead>
<tr>
<th>UNIT-2</th>
<th>Electrical Fundamentals</th>
</tr>
</thead>
</table>
| 2 | Identify and select the different measuring devices.
2. Identify different electrical supply systems
3. Identify open circuit, close circuit and short circuit conditions. |
| 1. Describe the sources of electrical energy.
2. Electrical current, voltage, emf, potential difference, resistance with their SI units.
3. Mention the meters used to measure different electrical quantities.
Identification Measuring devices
• Ammeter
• Voltmeter
• Wattmeter
• Ohmmeter
• Digital Multimeter
• Megger
• Tong tester
4. Explain supply systems like AC, DC. |
| 1. Connect voltmeter and ammeter in a simple circuit (Practicing of identification and connection of different meters) |
| 1:0:2 |
| 3 | Calculate basic electrical quantities
• Relationship between V, I and R. (Ohms law)
• Behavior of V, I in Series and Parallel DC circuits.
• Describe open circuit, close circuit and short circuit
• http://nreeder.com/Flash/ohmsLaw.htm |
| 1. Measure current, voltage and analyze effective resistance in series circuit
2. Demonstrate effects of shorts and opens in a circuit |
| 1:0:2 |
| 4 | Connect resistances in different combination
1. Equation to find the effective Resistances connected in series
2. Equation to find effective Resistances connected in parallel
3. Resistances connected series and parallel combinations
| 1. Determine the equivalent Resistance of parallel connected resistances. |
| 1:0:2 |
| 5 | Calculate and measurement of different parameters of an AC quantity.
Ac sinuswave: Sinusoidal voltage, current, amplitude, time-period, cycle, frequency, phase, phase difference, and their units.
• http://nreeder.com/Flash/freqPeriod.htm
• http://nreeder.com/Flash/oscill |
<p>| Generate and demonstrate the measurement of frequency, time period and phase difference of |
| 1:0:2 |</p>
<table>
<thead>
<tr>
<th>Unit</th>
<th>Topic</th>
<th>Details</th>
</tr>
</thead>
</table>
| 6 | 1. Calculate and measure electric power and energy | 1. Electrical work, power and power factor
 - SI units
 - Mention the meters used to measure them
 - http://nreeder.com/Flash/powerLaw.htm
 • Measure the voltage, current, power using relevant measuring instruments in a Single-phase load. |
| | 2. Identify and differentiate Single phase and Three phase supply | |
| | • SI units
 • Mention the meters used to measure them
 2. Single phase and Three phase supply. | 2. Measure the voltages in Three phase supply. |
| UNIT-3 | Protective Devices and Wiring circuits | |
| 8 | 1. Identify and select Protective Devices for given current and voltage rating
 2. Identify and select the various electrician tools | • Necessity of Protective Devices
 • Various Protective devices and their functions
 • fuse wire,
 • Glass cartridge fuse
 • HRC fuse
 • Kit-kat fuse
 • MCB
 • MCCB
 • RCCB
 • ELCB
 • Relay
 • Different types of electrician tools and their function.
 • Describe various wiring tools.
 • State procedure of care and maintenance of wiring tools. | 1. Wire up and test PVC Conduit wiring to control one lamp from two different places using suitable protective devices. |
UNIT-3

Electrical Wiring and Switchboards

1. **Identify and select wiring systems for a given application.**
2. **Identify and select the cables used for different current and voltage ratings.**
3. **Draw the wiring diagram.**

| 9 | 1. **Identify and select wiring systems for a given application.**
2. **Identify and select the cables used for different current and voltage ratings.**
3. **Draw the wiring diagram.** | 1. **Describe different types of wiring systems.**
- Surface conduit
- Concealed conduit
- PVC casing capping
2. **Wiring systems and their applications.**
3. **Describe the types of wires, cables used for different current and voltage ratings.** | 1. **Wire up and test PVC Conduit wiring to control of 2 sockets and 2 lamps.** | 2:0:4 |

| 10 | **Estimate and plan electrical wiring.** | 1. **Describe different types of wiring systems.**
- Surface conduit
- Concealed conduit
- PVC casing capping
2. **Wiring systems and their applications.**
3. **Describe the types of wires, cables used for different current and voltage ratings.** | 1. **Wire up and test PVC Conduit wiring to control of 2 sockets and 2 lamps.** | 1:0:2 |

UNIT-4

Electrical Machines and Batteries and UPS

| 11 | **Identify the types of transformer.**
2. **Verify the transformation ratio.** | **Transformer**
- Working principle
- Transformation ratio
- Types and applications with their ratings | **Connect the Single-phase transformer as Step-Up, Step-Down transformer and verify the transformation ratio.** | 1:0:2 |

| 12 | **Start and run the induction motor.**
2. **Troubleshoot DOL/Star-delta starter and induction motor.** | **Induction motor**
- Single phase and three phase Induction motor.
- Necessity of starters.
- Describe DOL AND STAR-DELTA starters.
2. **What are different causes and remedies for a failure of starter and induction motor.** | **1. Construct a suitable circuit to start and reverse the direction of three phase induction motor using DOL/ Star-delta starter.**
2. **Troubleshoot the DOL/Star-delta starter and induction motor.** | 2:0:4 |
<table>
<thead>
<tr>
<th>Section</th>
<th>Task</th>
<th>Details</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>13</td>
<td>Select and test the battery for a given application</td>
<td>Battery
- Types of batteries (Lead acid battery, lithium, sealed maintenance free (SMF) battery, Modular battery).
- Selection criteria of batteries for different applications.
- Ampere-Hour Capacity.
- Efficiency</td>
<td>Testing Condition of charging and discharging of a Lead-acid battery</td>
</tr>
<tr>
<td>14</td>
<td>Select the size of the UPS for a given application</td>
<td>UPS
- List the types and applications
- Selection criteria of UPS
- Sizing of UPS</td>
<td>Sizing of UPS</td>
</tr>
<tr>
<td>15</td>
<td>Identify and differentiate Conductors, insulators and semiconductors.</td>
<td>1. Compare Conductors, insulators and semiconductors with examples.
2. Identification of types and values of resistors-color codes.</td>
<td>Determine the value of resistance by color code and compare it with multimeter readings.</td>
</tr>
<tr>
<td>16</td>
<td>Identify and test PN junction Diode</td>
<td>PN junction diode
- Symbol
- Characteristics
- Diode as switch.
- Types of diodes and ratings
- Applications</td>
<td>Identify the terminals of a Diode and test the diode for its condition.</td>
</tr>
<tr>
<td>17</td>
<td>Build and test bridge rectifier circuit</td>
<td>Rectifier
- Need for AC to DC conversion
- Bridge rectifier with and without C filter,
- Rectifier IC.</td>
<td>Construct and test bridge rectifiers using semiconductor diode and rectifier IC. Compare the waveforms using CRO.</td>
</tr>
<tr>
<td>18</td>
<td>1. Identify and test Transistor 2. Build and test transistor as an electronic switch</td>
<td>Transistor (BJT)
- Symbol
- Structure
- Working principle</td>
<td>1. Identification of transistor terminals and test.
2. Construct and test the transistor as an electronic switch</td>
</tr>
<tr>
<td>19</td>
<td>1. Identify and test different digital IC 1.</td>
<td>- Comparison of analog and digital signal
- Digital systems, examples.
- Binary numbers, Boolean identities and laws.
- Digital system building blocks: Basic logic gates, symbols and truth tables.
- IC-Definition and advantages.</td>
<td>1. Verify NOT, AND, OR, NOR, EXOR and NAND gate operations (two inputs).
2. Test a Digital IC.
3. Identification and selection of suitable ICs for basic gates.</td>
</tr>
</tbody>
</table>
1. Sensors

- **Concept**
- **Types**:
 - Temperature, Pressure, Water, Light, Sound, Smoke, proximity Sensors, Flow, humidity, voltage, vibration, IR (Principle/working, ratings/specifications, cost, and applications)

2. Actuators

- **Concept**
- **Types and applications**.
- **Relay as an actuator**.

2. Connect and test an IR proximity sensor to a Digital circuit.

- **Connect and test a relay circuit using an Opto-coupler**. (Photo Diode & Transistor)

Refer note

Practical Skill Exercises

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>Practical Out Comes/Practical exercises</th>
<th>Unit No.</th>
<th>PO</th>
<th>CO</th>
<th>L: T:P Hrs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>• Identify Various types of safety signs and what they meanDemonstrate and practice use of PPE • Demonstrate how to free a person from electrocution appropriate first aid to victims, bandaging, heart attack, CPR, etc. • Fire safety, causes and precautionary activities. • Use of appropriate fire extinguishers on different types of fires. • Demonstrate rescue techniques applied during fire hazard. • Inform relevant authority about any abnormal situation during fire hazard.</td>
<td>1</td>
<td>1,4</td>
<td>1</td>
<td>0:0:2</td>
</tr>
<tr>
<td>2</td>
<td>• Demonstrate different types of earthing/using videos. • Prepare a Report on types of Earthing</td>
<td>1</td>
<td>1,4</td>
<td>1</td>
<td>0:0:2</td>
</tr>
<tr>
<td>3</td>
<td>Connect voltmeter and ammeter in a simple circuit. (Practicing of identification and connection of different meters)</td>
<td>2</td>
<td>1,4</td>
<td>2</td>
<td>0:0:2</td>
</tr>
<tr>
<td>4</td>
<td>1. Determine the equivalent Resistance of series connected resistances. 2. Demonstrate effects of shorts and opens in a circuit</td>
<td>2</td>
<td>1,4</td>
<td>2</td>
<td>0:0:2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Determine the equivalent Resistance of parallel connected resistances.</td>
<td>2</td>
<td>1,4</td>
<td>2</td>
<td>0:0:2</td>
</tr>
<tr>
<td>6</td>
<td>Generate and demonstrate the measurement of frequency, time period and phase difference of AC quantity using CRO and function generator.</td>
<td>2</td>
<td>1,4</td>
<td>2</td>
<td>0:0:2</td>
</tr>
<tr>
<td>7</td>
<td>Measure the voltage, current, power using relevant measuring instruments in a Single-phase load.</td>
<td>2</td>
<td>1,4</td>
<td>2</td>
<td>0:0:2</td>
</tr>
<tr>
<td>8</td>
<td>1. Measure single phase energy using relevant measuring instruments in a Single-phase load. 2. Measure the voltages in Three phase supply.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Wire up and test PVC Conduit wiring to control one lamp from two different places using suitable protective devices.</td>
<td>3</td>
<td>1,4</td>
<td>3</td>
<td>0:0:2</td>
</tr>
<tr>
<td>10</td>
<td>Wire up and test PVC Conduit wiring to control of 2 sockets and 2 lamps.</td>
<td>3</td>
<td>1,4</td>
<td>3</td>
<td>0:0:2</td>
</tr>
<tr>
<td>11</td>
<td>Wire up and test PVC Conduit wiring to control one lamp from two different places.</td>
<td>3</td>
<td>1,4</td>
<td>3</td>
<td>0:0:2</td>
</tr>
<tr>
<td>12</td>
<td>Plan and estimate the cost of electrical wiring for one 3mx3m room consisting of 2 CFL ceiling fan, 2 three pin sockets.</td>
<td>3</td>
<td>1,4</td>
<td>3</td>
<td>0:0:2</td>
</tr>
<tr>
<td>13</td>
<td>Connect the Single-phase transformer as Step-Up, Step-Down transformer and verify the transformation ratio.</td>
<td>4</td>
<td>1,4</td>
<td>4</td>
<td>0:0:2</td>
</tr>
<tr>
<td>14</td>
<td>Construct a suitable circuit to start and reverse the direction of three phase induction motor using DOL/star-delta starter.</td>
<td>4</td>
<td>1,4</td>
<td>4</td>
<td>0:0:2</td>
</tr>
<tr>
<td>15</td>
<td>Troubleshoot the DOL/Star-delta starter and induction motor</td>
<td>4</td>
<td>1,4</td>
<td>4</td>
<td>0:0:2</td>
</tr>
<tr>
<td>16</td>
<td>Testing Condition of charging and discharging of a Lead-acid battery.</td>
<td>4</td>
<td>1,4</td>
<td>4</td>
<td>0:0:2</td>
</tr>
<tr>
<td>17</td>
<td>Estimate the UPS rating for a computer lab with 50 computers/domestic.</td>
<td>4</td>
<td>1,4</td>
<td>4</td>
<td>0:0:2</td>
</tr>
<tr>
<td>18</td>
<td>Determine the value of resistance by color code and compare it with multimeter readings</td>
<td>5</td>
<td>1,4</td>
<td>5</td>
<td>0:0:2</td>
</tr>
<tr>
<td>19</td>
<td>Identify the terminals of a Diode and test the diode for its condition.</td>
<td>5</td>
<td>1,4</td>
<td>5</td>
<td>0:0:2</td>
</tr>
<tr>
<td>20</td>
<td>Construct and test bridge rectifiers using semiconductor diode and rectifier IC. Compare the waveforms using CRO.</td>
<td>5</td>
<td>1,4</td>
<td>5</td>
<td>0:0:2</td>
</tr>
<tr>
<td>21</td>
<td>Identification of transistor terminals and test. Construct and test the transistor as an electronic switch.</td>
<td>5</td>
<td>1,4</td>
<td>5</td>
<td>0:0:2</td>
</tr>
<tr>
<td>22</td>
<td>Test an IC. Verify the truth-table AND, OR, NOT logic gates.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>Verify the truth-table NAND, NOR, EX-OR, EX-NOR logic gates.</td>
<td>5</td>
<td>1,4</td>
<td>5</td>
<td>0:0:2</td>
</tr>
<tr>
<td>24</td>
<td>Connect and test an IR proximity sensor to a Digital circuit. NOTE: Any sensor listed in the theory may be used for condition appropriately.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
25. Connect and test a relay circuit using an Optocoupler. (Photo Diode & Transistor)
 | | | | | | |
 | | | | | | |

26. 1. Identify MCS-51 variants
 2. Identify commercially available PLC and their specifications.
 | | | | | | |
 | | | | | | |

Total: 0:0:52 = 52Hrs

8. MAPPING OF CO WITH PO

<table>
<thead>
<tr>
<th>CO</th>
<th>Course Outcome</th>
<th>PO Mapped</th>
<th>Experiments</th>
<th>Cognitive Level R/U/A</th>
<th>Lecture & Practical Sessions in Hrs</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td>Comply with the safety procedures</td>
<td>PO1, PO4</td>
<td>1-2</td>
<td>A</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>CO2</td>
<td>Apply the fundamentals of electricity.</td>
<td>PO1, PO4</td>
<td>3-7</td>
<td>A</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>CO3</td>
<td>Install and test electrical wiring system and protective devices.</td>
<td>PO1, PO4</td>
<td>8-12</td>
<td>A</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>CO4</td>
<td>Identify and Operate electrical machines, Batteries and UPS.</td>
<td>PO1, PO4</td>
<td>13-17</td>
<td>A</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>CO5</td>
<td>Identify and test the different electronic devices.</td>
<td>PO1, PO4</td>
<td>18-26</td>
<td>A</td>
<td>27</td>
<td>27</td>
</tr>
</tbody>
</table>

Course | CO's | Programme Outcomes (PO's) |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1 2 3 4 5 6 7</td>
<td></td>
</tr>
<tr>
<td>Fundamentals of Electrical and Electronics Engineering</td>
<td>CO1 3 0 0 3 0 0 0 0</td>
<td>CO2 3 0 0 3 0 0 0 0</td>
</tr>
</tbody>
</table>

Level 3- Highly Mapped, Level 2-Moderately Mapped, Level 1-Low Mapped, Level 0-Not Mapped

9. SUGGESTED LEARNING RESOURCES:

Reference Books:
6. Programmable Logic controllers, W BOLTON

e-Resources

Department of Collegiate & Technical Education Bengaluru-560001
1. https://www.youtube.com/watch?v=mc979OhitAg&list=PLWv9VM947MKi_7yl0_FCfzTBXpQU-Qd3K
2. https://www.youtube.com/watch?v=CWulQ1ZSE3c
3. en.wikipedia.org/wiki/Transformer
4. www.animations.physics.unsw.edu.au//jw/AC.html
5. www.alpharubicon.com/altenergy/understandingAC.htm
6. learn.sparkfun.com/tutorials/transistors
8. www.technologystudent.com/elec1/transis1.htm
9. www.learningaboutelectronics.com
10. https://www.youtube.com/watch?v=zLW7TPf310
11. https://www.youtube.com/watch?v=8PTNjw-hQIM

10. SUGGESTED LIST OF STUDENTS ACTIVITYS for CIE

Note: the following activities or similar activities for assessing CIE (IA) (Any one)
Each student should conduct different activity and no repeating should occur

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Using suitable meters/instruments give the practical working circuits to measure</td>
</tr>
<tr>
<td>2</td>
<td>Resistance, Current, Voltage, Power and Energy in DC and AC (Single phase) Circuits.</td>
</tr>
<tr>
<td>3</td>
<td>List out the different types of wiring systems used in your laboratories or house with their representation.</td>
</tr>
<tr>
<td>4</td>
<td>Mini-Projects: Like preparing extension box, switch box and wiring models,</td>
</tr>
<tr>
<td>5</td>
<td>List out the different protective devices used in your laboratories or house with their ratings.</td>
</tr>
<tr>
<td>6</td>
<td>Applications of Electro Magnetic Induction, statically induced and dynamically induced emf, self and mutual induced emfs.</td>
</tr>
<tr>
<td>7</td>
<td>Prepare a report on types of starters and enclosures used for various industrial applications of AC motors.</td>
</tr>
<tr>
<td>8</td>
<td>Types of Cells and Battery maintenance</td>
</tr>
<tr>
<td>9</td>
<td>Visit nearby Battery charging shop or show room and prepare a report of the visit.</td>
</tr>
<tr>
<td>10</td>
<td>Prepare a report on various types of diodes used for various industrial applications.</td>
</tr>
<tr>
<td>11</td>
<td>Prepare a report on various types of sensors and actuators used for various industrial applications.</td>
</tr>
<tr>
<td>12</td>
<td>Mini-Projects: Connect and test a sensor (domain application) to a Digital circuit</td>
</tr>
</tbody>
</table>
11. COURSE ASSESSMENT AND EVALUATION CHART

<table>
<thead>
<tr>
<th>Sl.No</th>
<th>Assessment</th>
<th>Duration</th>
<th>Max marks</th>
<th>Conversion</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>CIE Assessment 1 (Written Test -1-theory)</td>
<td>60 minutes</td>
<td>20</td>
<td>Average of two written tests 20</td>
</tr>
<tr>
<td></td>
<td>- At the end of 3rd week</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td>CIE Assessment 2 (Written Test -2-theory)</td>
<td>60 minutes</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- At the end of 13th week</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td>CIE Assessment 3 (Skill test)</td>
<td>3 Hours</td>
<td>100</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>- At the end of 5th week</td>
<td></td>
<td></td>
<td>Average of three skill tests 20</td>
</tr>
<tr>
<td>4.</td>
<td>CIE Assessment 4 (Skill test)</td>
<td>3 Hours</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- At the end of 7th week</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td>CIE Assessment 5 (Skill test)</td>
<td>3 Hours</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- At the end of 9th week</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.</td>
<td>CIE Assessment 6 (Student activity)</td>
<td>-</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>- At the end of 11th week</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.</td>
<td>Total Continuous Internal Evaluation (CIE)</td>
<td></td>
<td>60</td>
<td></td>
</tr>
<tr>
<td>8.</td>
<td>Semester End Examination (SEE) Assessment</td>
<td>3 Hours</td>
<td>100</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>(Practical Test)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total Marks</td>
<td></td>
<td>100</td>
<td></td>
</tr>
</tbody>
</table>

Note:
1. CIE written test is conducted for 20 marks (Two sections). Each section shall have two full questions of same CL, CO. Student shall answer one full question (10 marks) from each section.
2. CIE Skill test is conducted for 100 marks (3 Hours duration) as per scheme of evaluation and the obtained marks are scaled down to 20 marks

12. SCHEME OF VALUATION FOR SKILL TEST (CIE) & SEE

(CONTINUOUS INTERNAL & SEMESTER END EXAMINATION)

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>Particulars</th>
<th>Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Identification of meters/ equipment/wires/tools etc.</td>
<td>10</td>
</tr>
<tr>
<td>2.</td>
<td>Writing Circuit/writing diagram and Procedure*</td>
<td>25</td>
</tr>
<tr>
<td>3.</td>
<td>Conduction</td>
<td>35</td>
</tr>
<tr>
<td>4.</td>
<td>Results</td>
<td>10</td>
</tr>
<tr>
<td>5.</td>
<td>Viva-voce</td>
<td>20</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>100</td>
</tr>
</tbody>
</table>
12. RUBRICS FOR ACTIVITY

RUBRICS FOR ACTIVITY (Example only)
Faculty need to develop appropriate rubrics for respective activity

<table>
<thead>
<tr>
<th>Dimension</th>
<th>Beginning</th>
<th>Developing</th>
<th>Satisfactory</th>
<th>Good</th>
<th>Exemplary</th>
<th>Student Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Collection of data</td>
<td>Does not collect any information relating to the topic</td>
<td>Collects very limited information; some relate to the topic</td>
<td>Collects much information; but very limited relate to the topic</td>
<td>Collects some basic information; most refer to the topic</td>
<td>Collects a great deal of information; all refer to the topic</td>
<td></td>
</tr>
<tr>
<td>Fulfil team's roles & duties</td>
<td>Does not perform any duties assigned to the team role</td>
<td>Performs very little duties but unreliable.</td>
<td>Performs very little duties</td>
<td>Performs nearly all duties</td>
<td>Performs all duties of assigned team roles</td>
<td></td>
</tr>
<tr>
<td>Shares work equally</td>
<td>Always relies on others to do the work</td>
<td>Rarely does the assigned work; often needs reminding</td>
<td>Usually does the assigned work; rarely needs reminding</td>
<td>Normally does the assigned work</td>
<td>Always does the assigned work without having to be reminded.</td>
<td></td>
</tr>
<tr>
<td>Listen to other Team mates</td>
<td>Is always talking; never allows anyone else to speak</td>
<td>Usually does most of the talking; rarely allows others to speak</td>
<td>Talks good; but never show interest in listening others</td>
<td>Listens, but sometimes talk too much</td>
<td>Listens and speaks a fair amount</td>
<td></td>
</tr>
</tbody>
</table>

Average / Total Marks:

Lab Equipment Requirement

The following are the specification of the apparatus required for FEEE lab and number of apparatus required for the batch of 20 students.

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>Name of Equipment and Specification</th>
<th>Quantity Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Dual Channel 30 V, 2 A continuously variable DC Regulated Power Supply with Current and Overload Protection</td>
<td>05 Nos.</td>
</tr>
<tr>
<td>2</td>
<td>+/- 15 V, 2 A, fixed DC Regulated Power Supply</td>
<td>05 Nos.</td>
</tr>
<tr>
<td>3</td>
<td>Portable Moving Coil DC Voltmeters
 a) 0 - 1 V
 b) 0 - 10 V
 c) 0 - 30 V</td>
<td>Each 05 Nos.</td>
</tr>
<tr>
<td>Sl. No.</td>
<td>Name of Equipment and Specification</td>
<td>Quantity Required</td>
</tr>
<tr>
<td>--------</td>
<td>------------------------------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>4</td>
<td>Portable Moving Iron AC Voltmeters</td>
<td>Each 05 Nos.</td>
</tr>
<tr>
<td></td>
<td>a) 0 - 300 V</td>
<td></td>
</tr>
<tr>
<td></td>
<td>b) 0 - 600 V</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Portable Moving Coil DC Ammeters</td>
<td>Each 05 Nos.</td>
</tr>
<tr>
<td></td>
<td>a) 0 - 100 mA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>b) 0 - 1 A</td>
<td></td>
</tr>
<tr>
<td></td>
<td>c) 0 - 2 A</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Portable Moving Iron AC Ammeters</td>
<td>Each 05 Nos.</td>
</tr>
<tr>
<td></td>
<td>a) 0 - 2 A</td>
<td></td>
</tr>
<tr>
<td></td>
<td>b) 0 - 5 A</td>
<td></td>
</tr>
<tr>
<td></td>
<td>c) 0 - 10 A</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Watt-meters</td>
<td>Each 02 Nos.</td>
</tr>
<tr>
<td></td>
<td>a) 150/300V, 2 A, UPF</td>
<td></td>
</tr>
<tr>
<td></td>
<td>b) 300/600 V, 5/10 A, LPF</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Rheostats – 25 Ohms, 50 Ohms, 150 Ohms, 220 Ohms (all rated at 3 A)</td>
<td>Each 05 Nos.</td>
</tr>
<tr>
<td>9</td>
<td>Rheostat Loads s – 1 KW, 230 V</td>
<td>02 Nos.</td>
</tr>
<tr>
<td>11</td>
<td>Soldering Iron 60 W</td>
<td>05 Nos.</td>
</tr>
<tr>
<td>12</td>
<td>Single Phase Energy meter 10 A, 230 V, 50 Hz, Digital type</td>
<td>05 Nos.</td>
</tr>
<tr>
<td>13</td>
<td>Multi-meter Digital ¾”</td>
<td>06 Nos.</td>
</tr>
<tr>
<td>14</td>
<td>Duel Trace Oscilloscope – 30 MHz</td>
<td>02 Nos.</td>
</tr>
<tr>
<td>15</td>
<td>Three Phase Induction Motors :1 HP – 440 V 50 Hz, 2 HP – 440 V 50 Hz.</td>
<td>Each 02 Nos.</td>
</tr>
<tr>
<td>16</td>
<td>Three phase DOL, Star-Delta, Auto transformer starter</td>
<td>Each 02 Nos.</td>
</tr>
<tr>
<td>17</td>
<td>UPS 1 KVA</td>
<td>01 Nos.</td>
</tr>
<tr>
<td>18</td>
<td>Battery Lead-Acid type, 140 A-hr and Hydrometers</td>
<td>02 Nos.</td>
</tr>
<tr>
<td>20</td>
<td>I C Trainer kit</td>
<td>05 Nos</td>
</tr>
<tr>
<td>21</td>
<td>Digital IC's 7400, 7402, 7404, 7408, 7486 etc</td>
<td>Each 10 Nos.</td>
</tr>
<tr>
<td>22</td>
<td>Wooden Wiring board (2x3) ft</td>
<td>10</td>
</tr>
<tr>
<td>23</td>
<td>Wiring accessories</td>
<td></td>
</tr>
<tr>
<td>Page</td>
<td>Description</td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>-------------</td>
<td></td>
</tr>
</tbody>
</table>
| 2 | a) PVC conduit - ¾” - 10 lengths
b) Cap and casing - ¾” - 10 lengths
c) Switches Single Pole- 5A, 230 V
d) Switches two way – 5 A, 230 V
e) 3 Pin Sockets 5A, 230 V
f) Bulb Holders – 5 A, 230 V
g) 3 Pin Plug 5A, 230 V
h) 60 Watts Lamps
i) 100 Watts Lamps
j) 15 W CFL lamps
k) Copper Wires of sizes 1.5 mm², 2.5 mm², 4 mm² – 1 coil each
l) Gang boxes (1+1, 2+1, 2+2)
m) Kit –Kat fuses 5A, 15 A
n) MCB 16 A & 32 A/ 230 V, Single and Double Pole
o) ELCB 16 A & 32 A/ 230 V, Double Pole
p) Neutral link- 16 A, 230 V
q) Screws of assorted sizes
r) Testers

| 24 | Electronic Components
a) Diodes - BY 127 and IN 4001
b) Zener Diodes – 6.2 V, 5.6 V, 7.8 V
c) Relays – solid state Sugar cube type, SPST, Coil 6V, Power circuit 230 V, 5 A.
d) Spring Boards
e) Bread Boards
f) Tag Boards.

| 25 | Simple PANEL BOARD / CUBICAL consisting of bus-bars, CB/MCB/ELCB, meters, HRC fuses, magnetic contactors, cables, earthing points.

| Each 10 Nos. | Each 10 Nos. | 1 No |
COURSE OBJECTIVES:

Technicians working in industries or elsewhere essentially require the knowledge of environmental science so as to enable them to work and produce most efficient, economical and eco-friendly finished products.

1. Solve various engineering problems applying ecosystem to produce eco-friendly products.
2. Use relevant air and noise control methods to solve domestic and industrial problems.
3. Use relevant water and soil control methods to solve domestic and industrial problems.
4. To recognize relevant energy sources required for domestic and industrial applications.
5. Solve local solid and e-waste problems.

COURSE OUTCOMES:

At the end of the course student will be able to know:

CO1	Importance of ecosystem and terminology.
CO2	The extent of air pollution, effects, control measures and acts.
CO3	The extent of noise pollution, effects, control measures and acts.
CO4	The water and soil pollution, effects, control measures and acts
CO5	Different renewable energy resources and efficient process of harvesting.
CO6	Solid Waste Management and Environmental acts.
COURSE CONTENT:

Marks: 15
Unit-1 Ecosystem
Allotted Hrs: 03

| Structure of ecosystem, Biotic & Abiotic components, Aquatic (Lentic and Lotic) and terrestrial ecosystem. Global warming - Causes, effects, Green House Effect, Ozone depletion. |
| CO1 1,5,7 |

Marks: 20
Unit-2 Air Pollution
Allotted Hrs: 03

| Air pollution, Natural and manmade sources of air pollution, Effects of air pollution. Air Pollutants and Types. Control of air pollutants by Cyclone separator and Electrostatic Precipitator, Air (prevention and control of pollution) act 1981 |
| CO2 1,5,7 |

Marks: 10
Unit-3 Noise Pollution:
Allotted Hrs: 02

| Noise pollution: sources of pollution, measurement of pollution level, Effects and Control of Noise pollution, Noise pollution (Regulation and Control) Rules, 2000 |
| CO3 1,5,7 |

Marks: 20
Unit-4 Water and Soil Pollution:
Allotted Hrs: 06

| CO4 1,5,7 |

Marks: 20
Unit-5 Renewable sources of Energy
Allotted Hrs: 07

| CO5 1,5,7 |

Marks: 15
Unit-6 Solid Waste Management and Environmental Acts
Allotted Hrs: 05

| CO6 1,5,7 |

<table>
<thead>
<tr>
<th>Unit No & Name</th>
<th>Detailed Course Content</th>
<th>CO</th>
<th>PO</th>
<th>Contact Hrs</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Ecosystem</td>
<td>Structure of ecosystem, Biotic & Abiotic components, Aquatic (Lentic and Lotic) and terrestrial ecosystem. Global warming - Causes, effects.</td>
<td>CO1</td>
<td>1,5,7</td>
<td>1</td>
</tr>
<tr>
<td>2. Air and Pollution</td>
<td>Air pollution, Natural sources of air pollution, Man Made sources of air pollution</td>
<td>CO2</td>
<td>1,5,7</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Air pollutants and Types, Effects of Particulate Pollutants and control by Cyclone separator</td>
<td>CO2</td>
<td>1,5,7</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Effects of Particulate Pollutants and control by Electrostatic Precipitator, Air (prevention and control of pollution) act 1981.</td>
<td>CO2</td>
<td>1,5,7</td>
<td>6</td>
</tr>
<tr>
<td>4. Water and Soil Pollution:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------------------------</td>
<td>--</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sources of water pollution. Types of water pollutants, Characteristics of water pollutants.</td>
<td>CO4 1,5,7 9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control measures of water pollution.</td>
<td>CO4 1,5,7 10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Definition and list unit operations in water and WasteWater Treatment process, Water (prevention and control of pollution) act 1974.</td>
<td>CO4 1,5,7 11</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Water conservation – Importance of Rain Water Harvesting</td>
<td>CO4 1,5,7 12</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Soil pollution, Causes and Effects due to Fertilizers, Pesticides and Insecticides</td>
<td>CO4 1,5,7 13</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Preventive measures of Soil Pollution due to Excessive use of Fertilizers, Pesticides and Insecticides.</td>
<td>CO4 1,5,7 14</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>5. Renewable sources of Energy</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Solar Energy: Basics of Solar energy.</td>
<td>CO5 1,5,7 15</td>
</tr>
<tr>
<td>Solar collectors and advantages of Advanced solar collectors.</td>
<td>CO5 1,5,7 16</td>
</tr>
<tr>
<td>Solar water heater, Solar stills and their uses.</td>
<td>CO5 1,5,7 17</td>
</tr>
<tr>
<td>Biomass: Overview of biomass as energy source. Thermal characteristics of biomass as fuel.</td>
<td></td>
</tr>
<tr>
<td>Wind energy: Current status and future prospects of wind energy.</td>
<td>CO5 1,5,7 18</td>
</tr>
<tr>
<td>Wind energy in India.</td>
<td></td>
</tr>
<tr>
<td>Need of new Energy sources, Different type's new energy sources.</td>
<td>CO5 1,5,7 19</td>
</tr>
<tr>
<td>Environmental benefits of New Energy Sources-Hydrogen energy</td>
<td></td>
</tr>
<tr>
<td>Environmental benefits of New Energy Sources- Ocean energy resources</td>
<td>CO5 1,5,7 20</td>
</tr>
<tr>
<td>Environmental benefits of New Energy Sources-Tidal energy conversion.</td>
<td>CO5 1,5,7 21</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>6. Solid Waste Management and Environmental Acts</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Solid waste generation, Sources, Characteristics of solid waste Solid Waste Management rules 2016</td>
<td>CO6 1,5,7 22</td>
</tr>
<tr>
<td>E- Waste generation Sources and characteristics, E waste management rules 2016</td>
<td>CO6 1,5,7 23</td>
</tr>
<tr>
<td>Plastic Waste generation Sources and characteristics, Plastic Waste Sources and characteristics</td>
<td>CO6 1,5,7 24</td>
</tr>
<tr>
<td>Recycled plastic rules 2016,Importance of Environment (protection) act 1986,</td>
<td>CO6 1,5,7 25</td>
</tr>
<tr>
<td>Occupational health and safety measures.</td>
<td>CO6 1,5,7 26</td>
</tr>
<tr>
<td>Total</td>
<td>26</td>
</tr>
</tbody>
</table>

References:

(a) Suggested Learning Resources:

Books:

5. O.P. Gupta, Elements of Environmental Pollution Control, Khanna Publishing House, New Delhi

(b) Open source software and website address:

1) www.eco-prayer.org
2) www.teriin.org
3) www.cpcp.nic.in
4) www.cpcp.gov.in
5) www.indiaenvironmentportal.org.in
6) www.whatis.techtarget.com
7) www.sustainabledevelopment.un.org
8) www.conserve-energy-future.com

Teachers should use the following strategies to achieve the various outcomes of the course.
• Different methods of teaching and media to be used to attain classroom attention.
• Massive open online courses (MOOCs) may be used to teach various topics/subtopics.
• 15-20% of the topics which are relatively simpler or descriptive in nature should be given to the students for self-learning and assess the development of competency through classroom presentations.
• Micro-projects may be given to group of students for hand-on experiences
• Encouraging students to visit sites such as Railway station and research establishment around the institution.

Mapping of Course Outcomes with Programme Outcomes

<table>
<thead>
<tr>
<th>CO</th>
<th>Course Outcome</th>
<th>PO Mapped</th>
<th>Cognitive Level R/U/A</th>
<th>Theory Sessions In Hrs</th>
<th>Allotted marks for CIE on cognitive levels</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td>Importance Of ecosystem and terminology</td>
<td>1,5,7</td>
<td>R,U</td>
<td>03</td>
<td>02 02</td>
<td>04</td>
</tr>
<tr>
<td>CO2</td>
<td>The extent of air pollution, effects, control measures and acts.</td>
<td>1,5,7</td>
<td>R,U</td>
<td>03</td>
<td>03 02</td>
<td>05</td>
</tr>
<tr>
<td>CO3</td>
<td>The extent of noise pollution, effects, control measures and acts.</td>
<td>1,5,7</td>
<td>R,U</td>
<td>02</td>
<td>03 02</td>
<td>05</td>
</tr>
<tr>
<td>CO4</td>
<td>The water and soil pollution, effects, control measures and acts</td>
<td>1,5,7</td>
<td>R,U</td>
<td>06</td>
<td>03 02</td>
<td>05</td>
</tr>
</tbody>
</table>
Different renewable energy resources and efficient process of harvesting.

Solid Waste Management and Environmental acts.

<table>
<thead>
<tr>
<th>CO5</th>
<th>Programme Outcomes (PO's)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td>1,5,7</td>
<td>R,U</td>
</tr>
<tr>
<td>CO6</td>
<td>Programme Outcomes (PO's)</td>
</tr>
<tr>
<td>-----</td>
<td>--------------------------</td>
</tr>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td>1,5,7</td>
<td>R,U</td>
</tr>
</tbody>
</table>

Total Hours of instruction 26 30

Level of Mapping PO’s with CO’s

<table>
<thead>
<tr>
<th>Course</th>
<th>CO1</th>
<th>CO2</th>
<th>CO3</th>
<th>CO4</th>
<th>CO5</th>
<th>CO6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Environmental Science</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>CO1</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>CO2</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>CO3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>CO4</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>CO5</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>CO6</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
</tr>
</tbody>
</table>

Level 3- Highly Mapped, Level 2-Moderately Mapped, Level 1-Low Mapped, Level 0- Not Mapped

Method is to relate the level of PO with the number of hours devoted to the CO which maps the given PO.

1. If ≥50% of classroom sessions related to the CO are addressing a particular PO, it is considered that PO is mapped at Level 3
2. If 30 to 50% of classroom sessions related to the CO are addressing a particular PO, it is considered that PO is mapped at Level 2
3. If ≤50% of classroom sessions related to the CO are addressing a particular PO, it is considered that PO is mapped at Level 1
4. If < 5% of classroom sessions related to the CO are addressing a particular PO, it is considered that PO is considered not mapped i.e. Level 0

Course Assessment and Evaluation Chart

<table>
<thead>
<tr>
<th>Sl. No</th>
<th>Assessment</th>
<th>Duration</th>
<th>Max marks</th>
<th>Conversion</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>CIE Assessment 1 (Written Test -1) - At the end of 3 week</td>
<td>80 minutes</td>
<td>30</td>
<td>Average of three written tests 30</td>
</tr>
<tr>
<td>2.</td>
<td>CIE Assessment 2 (Written Test -2) - At the end of 7 week</td>
<td>80 minutes</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td>CIE Assessment 3 (Written Test -3) - At the end of 13 week</td>
<td>80 minutes</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td>CIE Assessment 4 (MCQ/Quiz) - At the end of 5 week</td>
<td>60 minutes</td>
<td>20</td>
<td>Average of three 20</td>
</tr>
<tr>
<td>5.</td>
<td>CIE Assessment 5 (Open book Test) - At the end of 9 week</td>
<td>60 minutes</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>6.</td>
<td>CIE Assessment 6 (Student activity/Assignment) - At the end of 11 week</td>
<td>60 minutes</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>7.</td>
<td>Total Continuous Internal Evaluation (CIE) Assessment</td>
<td></td>
<td>50</td>
<td></td>
</tr>
</tbody>
</table>

Total Marks 50

Note:

1. Average marks of Three CIE shall be rounded off to the next higher digit.
2. Assessment of assignment and student activity is evaluated through appropriate rubrics by the respective course coordinator. The secured mark in each case is rounded off to the next higher digit.
MANDATORY STUDENT ACTIVITY: EACH STUDENT HAS TO SELECT ANY ONE OF THE LISTED

1. Students chose one thing to reduce at home each week and write journal entries about their successes and challenges implementing the change. In class, they form groups and create "Do You Know?" posters.

2. Students pretend they are architects, and come up with a series of design changes to make their school more environmentally friendly. They then grade their projects according to a rubric.

3. A presentation for Green Team Club members to introduce themselves and the purpose of their club. They explain how to use their new recycling bins, in the classroom and in the cafeteria.

4. Ever wonder what's in your school’s waste? This hands-on activity helps students assess their school’s waste in order to think of ways to reduce it. The results can be incorporated into the school’s recycling plan.

5. How do we measure climate change? What activities contribute to climate change?

6. Start a compost or worm bin. Composting is a hands-on way to learn about important life science concepts such as ecosystems, food webs and biodegradation. Students experience how worms and other decomposers recycle fruits and vegetable scraps into compost. Use the compost in your college garden! Have green team students make up a skit and present details about the new composting program to all classrooms. Have them make signs for the bins (compost, recycle, and landfill), monitor the waste collection at lunchtime, cart the food waste to the compost, and decide how and where the compost will be used.

7. Paint posters and decorate bulletin boards or the doors to the cafeteria with waste-free lunch messages to announce or support a waste-free event, and have students vote for their favorite poster.

8. Conduct a classroom audit to identify waste and look for ideas to reduce and reuse. Empower the student to set goals, search for solutions and review progress.

9. Go on a field trip. Visit your local landfill, recycling center, or a nearby composting facility where the students can see first-hand what is happening to waste, and learn about the lifecycle of waste and its affect on the environment.

10. Home energy audit: Have students make a list of all the appliances and light bulbs in their house. How much energy does their house use if all the lights are on for 4 hours per day? If their appliances are on for 2 hours per day? How much energy could they save if they switched to energy-efficient appliances or light bulbs?

11. Use recycled material in art projects: Recycled materials can make beautiful art projects such as jewelry, planters, and bird houses. Incorporating materials that would otherwise be thrown away into art projects can show your students how to find new uses for these items.
12. Life cycle: One way to show students what happens when you put something in the trash versus recycling or reusing the object is to do a life cycle analysis. This is a flow chart that shows the environmental impacts of an object, from extracting the raw materials to decomposition and everything in between. When something is put in the trash instead of being reused or recycled, the life cycle assessment will show a bigger environmental impact. When something is reused or recycled, the environmental impact is less because raw materials don’t need to be extracted to create something new.

Model Question Paper

I A Test (CIE)

<table>
<thead>
<tr>
<th>Qn.No</th>
<th>Question</th>
<th>CL</th>
<th>CO</th>
<th>PO</th>
<th>Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Section-1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.a)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>c)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.a)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>c)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Section-2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.a)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>c)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.a)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>c)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Section-3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.a)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>c)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.a)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>c)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: Answer one full question from each section. One full question carries 10 marks.
Course Code 20PM01T
Semester II

Course Title Project Management Skills
Course Group PM

No. of Credits 4
Type of Course Activity based study

Course Category Theory with Activities
Total Contact Hours 6 Hrs Per Week (2Theory +4 hrs of classroom activities)
78 Hrs Per Semester

Prerequisites 10th Level Mathematics
Teaching Scheme 4 hrs per week classroom sessions dedicated to case studies & activities

CIE Marks 50
SEE Marks 50

RATIONALE

Project Management is a confluence of Management principles and Engineering subject area. This course enables the students to develop conceptualisation of Engineering Management principles and apply the same for their engineering projects, in their domains, example, Software Development project or Construction Project and so on. The course integrates three core areas of Planning, Execution and Auditing of Projects.

1. COURSE SKILL SET

Student will be able to:

8. Understand what constitutes a project, Plan for the execution of the project by breaking into manageable work units, and Prepare necessary project artifacts
9. Track and control the Project while preparing verifiable records for Project Inspections and Audits
10. Inspect and Audit projects for Milestones or other project completion criteria and other metrics, Defects and remediation, Project learnings
11. Gain knowledge and develop curiosity on latest technology trends in Project management
2. COURSE OUT COMES

At the end of the course, student will be able to

<table>
<thead>
<tr>
<th>CO1</th>
<th>Apply the concepts of Project Management to real projects which are expressed in the form of the Project reports or Engineering drawings</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO2</td>
<td>Estimate Project resources needed Time, Material and Effort, and Plan for execution</td>
</tr>
<tr>
<td>CO3</td>
<td>Understand, analyse and assess the risks involved in a project and plan for managing them</td>
</tr>
<tr>
<td>CO4</td>
<td>Use Project Management Software and processes to track and control Projects</td>
</tr>
<tr>
<td>CO5</td>
<td>Conduct inspection of Projects and audit progress and bills</td>
</tr>
<tr>
<td>CO6</td>
<td>Understand the Digital Technology trends in Project management and concepts like Smart cities</td>
</tr>
</tbody>
</table>

3. SUGGESTED SPECIFICATION TABLE WITH HOURS & MARKS

<table>
<thead>
<tr>
<th>UNIT NO</th>
<th>UNIT TITLE</th>
<th>TEACHING HOURS (L-T-P)</th>
<th>MARKS DISTRIBUTION (THEORY)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>R LEVEL</td>
</tr>
<tr>
<td>1</td>
<td>Introduction</td>
<td>02-00-04</td>
<td>8</td>
</tr>
<tr>
<td>2</td>
<td>Project Administration</td>
<td>06-00-12</td>
<td>8</td>
</tr>
<tr>
<td>3</td>
<td>Project Lifecycle</td>
<td>04-00-08</td>
<td>8</td>
</tr>
<tr>
<td>4</td>
<td>Project Planning, Scheduling and Monitoring</td>
<td>06-00-12</td>
<td>8</td>
</tr>
<tr>
<td>5</td>
<td>Project Control, Review and Audit</td>
<td>06-00-12</td>
<td>8</td>
</tr>
<tr>
<td>6</td>
<td>Digital Project Management</td>
<td>02-00-04</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>26-00-52=78</td>
<td>48</td>
</tr>
</tbody>
</table>

Legends: R = Remember; U = Understand; A = Apply and above levels (Bloom’s revised taxonomy)

4. DETAILS OF COURSE CONTENT

The following topics/subtopics is to be taught and assessed in order to develop Unit Skill sets for achieving CO to attain identified skill sets.
<table>
<thead>
<tr>
<th>UNIT NO</th>
<th>Unit skill set (In cognitive domain)</th>
<th>Topics / Subtopics</th>
<th>Hours L-T-P</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Introduction Use Basic Science, Maths skills to understand Project management and project planning, execution and control.</td>
<td>Introduction and definition, Features of a Project, Types of Projects, Benefits and Obstacles in Project Management, Project Management Profession, Role of Project manager, Consultants, Project and Operation, Project Management Process, Project Scope</td>
<td>02-00-04</td>
</tr>
<tr>
<td>2</td>
<td>Project Administration Able to develop WBS, PEP and PM processes for Project with given inputs</td>
<td>Project Administration, Project Team, Project Design, Work Breakdown Structure (WBS), Project Execution Plan (PEP), Systems and Procedure Plan, Project Direction, Communication and Co-ordination, Project Success</td>
<td>06-00-12</td>
</tr>
<tr>
<td>3</td>
<td>Project Lifecycle Use project administration and project lifecycle knowledge to Assess and plan for project risk</td>
<td>Project Life Cycle, Phases - Project Planning, Project Execution, Project Closure, Project Risks, Project Cost Risk Analysis, Time and Cost overruns</td>
<td>04-00-08</td>
</tr>
<tr>
<td>4</td>
<td>Project Planning, Project Scheduling and Project Monitoring and Implementation Able to develop a detailed project plan given the inputs on manpower, funds availability and time availability</td>
<td>Project Planning Function, Structure, Project Scheduling, Project monitoring and Project evaluation</td>
<td>06-00-12</td>
</tr>
<tr>
<td>5</td>
<td>Project Control, Review and Audit Use Project Management lifecycle knowledge to Control project parameters, review and audit project performance</td>
<td>Project Control, Problems of Project Control, Gantt Charts, Milestone Charts, Critical Path Method (CPM), Network Technique in Project Scheduling, Crashing Project Duration through Network, Project Review, Initial Review, Performance Evaluation,</td>
<td>06-00-12</td>
</tr>
</tbody>
</table>
6. Digital Project Management

Understand latest trends of digital technologies impacting the domain of project management and application of the same in multiple scenario

Digital Technology trends in Project management, Cloud Technology, IoT, Smart cities, Data and analytics, case studies

Case study 3

<table>
<thead>
<tr>
<th>MAPPING OF CO WITH PO</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO</td>
</tr>
<tr>
<td>-------</td>
</tr>
<tr>
<td>CO1</td>
</tr>
<tr>
<td>CO2</td>
</tr>
<tr>
<td>CO3</td>
</tr>
<tr>
<td>CO</td>
</tr>
<tr>
<td>-----</td>
</tr>
<tr>
<td>CO4</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>CO5</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>CO6</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project Management</td>
<td>CO1</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>CO2</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>CO3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>CO4</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>CO5</td>
<td>3</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>CO6</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>2</td>
</tr>
</tbody>
</table>

Level 3- Highly Mapped, Level 2-Moderately Mapped, Level 1-Low Mapped, Level 0-Not Mapped

7. INSTRUCTIONAL STRATEGY

These are sample Strategies, which teacher can use to accelerate the attainment of the various course outcomes

1. Explicit instruction will be provided in intervention classes or by using different differentiation strategies in the main classroom.
2. Lecturer method (L) does not mean only traditional lecture method, but different type of teaching method and media that are employed to develop the outcomes.
3. Observing the way their more proficient peers use prior knowledge to solve current challenges and persevere in problem solving will help struggling students to improve their approach to engaging with rich contextual problems.
4. Topics be introduced always with a real-life example and then answering What, how, why and when.
5. The teacher is able to show different ways to solve the same problem and encourage the students to come up with their own creative ways to solve them.
6. In a perfect world, teacher would always be able to demonstrate how every concept can be applied to the real world - and when that’s possible, it helps improve the students’ understanding. When a concept cannot be applied in that manner, we can still share how it might be applied within mathematics.

8. SUGGESTED LEARNING RESOURCES:

<table>
<thead>
<tr>
<th>SNo.</th>
<th>Author</th>
<th>Title of Books</th>
<th>Publication/Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Dr. Lalitha Balakrishnan & Dr. Gowri Ramachandran</td>
<td>Project Management</td>
<td>Himalaya Publishing, 2019</td>
</tr>
<tr>
<td>2</td>
<td>Shailesh Kumar Shivakumar</td>
<td>Complete Guide to Digital Project Management</td>
<td>Apress, 2019</td>
</tr>
<tr>
<td>3</td>
<td>Prasanna Chandra</td>
<td>Project planning, analysis, selection, implementation and review</td>
<td>Tata McGraw Hill</td>
</tr>
<tr>
<td>4</td>
<td>Gopala Krishnan</td>
<td>Project Management</td>
<td>Mcmillan India Ltd.</td>
</tr>
</tbody>
</table>

9. COURSE ASSESSMENT AND EVALUATION CHART

<table>
<thead>
<tr>
<th>Sl.No</th>
<th>Assessment</th>
<th>Duration</th>
<th>Max marks</th>
<th>Conversion</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>CIE Assessment 1 (Written Test -1)</td>
<td>80 minutes</td>
<td>30</td>
<td>Average of three written tests</td>
</tr>
<tr>
<td></td>
<td>At the end of 3rd week</td>
<td></td>
<td></td>
<td>30</td>
</tr>
<tr>
<td>2</td>
<td>CIE Assessment 2 (Written Test -2)</td>
<td>80 minutes</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td></td>
<td>At the end of 7th week</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sl.No</td>
<td>Assessment</td>
<td>Duration</td>
<td>Max marks</td>
<td>Conversion</td>
</tr>
<tr>
<td>-------</td>
<td>------------</td>
<td>----------</td>
<td>-----------</td>
<td>------------</td>
</tr>
<tr>
<td>3</td>
<td>CIE Assessment 3 (Written Test -3) At the end of 13th week</td>
<td>80 minutes</td>
<td>30</td>
<td>Average of three</td>
</tr>
<tr>
<td>4</td>
<td>CIE Assessment 4 (Group Assignment -1) At the end of 5th week</td>
<td>60 minutes</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>5</td>
<td>CIE Assessment 5 (Group Assignment -2) At the end of 9th week</td>
<td>60 minutes</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>CIE Assessment 6 (Individual Student activity/Assignment) At the end of 11th week</td>
<td>60 minutes</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total Continuous Internal Evaluation (CIE) Assessment</td>
<td></td>
<td></td>
<td>50</td>
</tr>
<tr>
<td>8</td>
<td>Semester End Examination (SEE) Assessment (Written Test)</td>
<td>3 Hrs</td>
<td>100</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>Total Marks</td>
<td></td>
<td></td>
<td>100</td>
</tr>
</tbody>
</table>

Note:

1. SEE (Semester End Examination) is conducted for 100 Marks theory course for a time duration of 3 Hrs

2. Three CIE (written test), each of 30 marks for a time duration of 80 minutes shall be conducted. Also, three CIE (MCQ or Quiz/Group Assignment/Individual student activity or assignment) each of 20 marks for the time duration of 60 minutes shall be conducted. Any fraction at any stage during evaluation will be rounded off to the next higher digit

3. Assessment of assignment and student activity is evaluated through appropriate rubrics by the respective course coordinator. The secured mark in each case is rounded off to the next higher digit.

10 DETAILED COURSE CONTENT

<table>
<thead>
<tr>
<th>Unit No And Name</th>
<th>DETAILED COURSE CONTENT</th>
<th>CONTACT HRS</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1 Introduction</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Unit No And Name</td>
<td>DETAILED COURSE CONTENT</td>
<td>CONTACT HRS</td>
<td>TOTAL</td>
</tr>
<tr>
<td>------------------</td>
<td>--------------------------</td>
<td>-------------</td>
<td>-------</td>
</tr>
<tr>
<td>1. Introduction</td>
<td>1.2 Meaning of Project</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.3 Definition and No Change Mode</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.4 Features of a Project</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.5 Types of Projects</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.6 Benefits of Project Management</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.7 Obstacles in Project Management</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.8 Project Management A Profession</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.9 Project Manager and His Role</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.10 Project Consultants</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.11 What is Operation?</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.12 Difference between Project and Operation</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.13 What is Process in Project Management and Process Groups?</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.14 What is Scope? Difference between Project Group Objectives and</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.15 Project Scope</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Project Administration</td>
<td>2.1 Essentials of Project Administration</td>
<td>3</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>2.2 Project Team</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.3 Project Design</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.4 Work Breakdown Structure (WBS)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.5 Project Execution Plan (PEP)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.6 Contracting Plan</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.7 Work Packing Plan</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.8 Organisation Plan</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.9 Systems and Procedure Plan</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.10 Project Procedure Manual</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.11 Project Diary</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.12 Project Execution System</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.13 Project Direction</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.14 Communication in a Project</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.15 Project Co-ordination</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
3. Project Lifecycle

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2.16 Pre-requisites for Successful Project Implementation</td>
<td></td>
</tr>
<tr>
<td>3.1 Introduction</td>
<td>6</td>
</tr>
<tr>
<td>3.2 Phases of Project Life Cycle</td>
<td>12</td>
</tr>
<tr>
<td>3.3 Project Management Life Cycle</td>
<td></td>
</tr>
<tr>
<td>3.4 Project Planning</td>
<td></td>
</tr>
<tr>
<td>3.5 Project Execution</td>
<td></td>
</tr>
<tr>
<td>3.6 Project Closure</td>
<td></td>
</tr>
<tr>
<td>3.7 Project Risks</td>
<td>3</td>
</tr>
<tr>
<td>3.8 Types of Risks: Illustrations</td>
<td></td>
</tr>
<tr>
<td>3.9 Risk Assessment Techniques with Illustrations</td>
<td></td>
</tr>
<tr>
<td>3.10 Project Cost Risk Analysis</td>
<td>3</td>
</tr>
<tr>
<td>3.11 Estimating Time and Cost Overrun Risks</td>
<td></td>
</tr>
<tr>
<td>3.12 Organisation/Procedural/Systemic Reasons for Project Cost Overruns</td>
<td></td>
</tr>
<tr>
<td>3.13 Time Overruns</td>
<td></td>
</tr>
</tbody>
</table>

4. Project Planning, Scheduling and Monitoring

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1 Introduction</td>
<td>6</td>
</tr>
<tr>
<td>4.2 Nature of Project Planning</td>
<td>18</td>
</tr>
<tr>
<td>4.3 Need for Project Planning</td>
<td></td>
</tr>
<tr>
<td>4.4 Functions of Project Planning</td>
<td></td>
</tr>
<tr>
<td>4.5 Steps in Project Planning</td>
<td></td>
</tr>
<tr>
<td>4.6 Project Planning Structure</td>
<td></td>
</tr>
<tr>
<td>4.7 Project Objectives and Policies</td>
<td></td>
</tr>
<tr>
<td>4.8 Tools of Project Planning</td>
<td></td>
</tr>
<tr>
<td>4.9 Project Scheduling</td>
<td></td>
</tr>
<tr>
<td>4.10 Time Monitoring Efforts</td>
<td></td>
</tr>
<tr>
<td>4.11 Bounding Schedules</td>
<td></td>
</tr>
<tr>
<td>4.12 Scheduling to Match Availability of Manpower</td>
<td></td>
</tr>
<tr>
<td>4.13 Scheduling to Match Release of Funds</td>
<td></td>
</tr>
<tr>
<td>4.14 Problems in Scheduling Real-life Projects</td>
<td></td>
</tr>
<tr>
<td>4.15 Introduction</td>
<td>3</td>
</tr>
<tr>
<td>Section</td>
<td>Chapter</td>
</tr>
<tr>
<td>--</td>
<td>-----------</td>
</tr>
<tr>
<td>4.16 Situation Analysis and Problem Definition</td>
<td></td>
</tr>
<tr>
<td>4.17 Setting Goals and Objectives</td>
<td></td>
</tr>
<tr>
<td>4.18 Generating Structures and Strategies</td>
<td></td>
</tr>
<tr>
<td>4.19 Implementation</td>
<td></td>
</tr>
<tr>
<td>4.20 What is Project Evaluation?</td>
<td></td>
</tr>
<tr>
<td>4.21 Why is Project Evaluation Important?</td>
<td></td>
</tr>
<tr>
<td>4.22 What are the Challenges in Monitoring and Evaluation?</td>
<td></td>
</tr>
<tr>
<td>5. Project Control, Review and Audit</td>
<td>5.1</td>
</tr>
<tr>
<td>5.2 Projected Control Purposes</td>
<td></td>
</tr>
<tr>
<td>5.3 Problems of Project Control</td>
<td></td>
</tr>
<tr>
<td>5.4 Gantt Charts</td>
<td></td>
</tr>
<tr>
<td>5.5 Milestone Charts</td>
<td></td>
</tr>
<tr>
<td>5.6 Critical Path Method (CPM)</td>
<td></td>
</tr>
<tr>
<td>5.7 Construction of a Network</td>
<td></td>
</tr>
<tr>
<td>5.8 Network Technique in Project Scheduling</td>
<td></td>
</tr>
<tr>
<td>5.9 Crashing Project Duration through Network</td>
<td></td>
</tr>
<tr>
<td>5.10 Project Review</td>
<td></td>
</tr>
<tr>
<td>5.11 Initial Review</td>
<td></td>
</tr>
<tr>
<td>5.12 Post Audit</td>
<td></td>
</tr>
<tr>
<td>5.13 Performance Evaluation</td>
<td></td>
</tr>
<tr>
<td>5.14 Abandonment Analysis</td>
<td></td>
</tr>
<tr>
<td>5.15 Objectives of Project Audit</td>
<td></td>
</tr>
<tr>
<td>5.16 Functions of Project Auditor</td>
<td></td>
</tr>
<tr>
<td>5.17 Project Audit Programme</td>
<td></td>
</tr>
<tr>
<td>5.18 Difficulties in Establishing Audit Purpose and Scope</td>
<td></td>
</tr>
<tr>
<td>6. Digital Project Management</td>
<td>6.1</td>
</tr>
<tr>
<td>6.2 Cloud Technology, IoT, AR and VR applications in Project management, Smart Cities</td>
<td></td>
</tr>
<tr>
<td>6.1 Digital Technology trends in Project management</td>
<td></td>
</tr>
</tbody>
</table>
Case Studies:

Please note: The Tutors can either use the following Case studies and activities or Design on their own, with the overall Learning Outcomes being met.

Case Study I: Residential House – Project Execution Plan

1. Dr. Sunil Kulkarni wants to build a house on his 9000 square feet (90x100) vacant plot in Bengaluru. His requirements were given below.

 i) He lives with his wife, parents and two college going children.
 ii) He likes open space around his house and likes to do gardening during free time
 iii) His wife teaches Yoga and about 30 middle aged and old people attend the daily sessions.
 iv) He has a budget limitation of INR 230,00,000 for this project and wants to present to his wife on their 20th wedding anniversary which is 18 months away.
 v) His parents can not climb stairs and hence prefer a ground floor room
 vi) All the rooms should have attached bathrooms

How-ever the Civil contractor who took the work, overshot the time and money available and hence Dr Sunil was unhappy with the Architect firm who recommended the Contractor.

Task:

- Split the class into groups of three
- Ask them to prepare 2D drawings with Plan, Elevation, Sections and perspectives.
- Prepare the detailed WBS, a Project execution plan and Project communication plan for contractors
- Estimate the quantities
- Discuss on the possible reasons for delay and methods with which performance to both time and budget could have been achieved
- Present it in a seminar, with each group getting 5-10 minutes to present their idea.
Case Study 2a:

The Columbus Hospital proposed in Hubli is a 200 bed speciality private hospital for treatment of Cancer. The hospital will come up on a 12 acre plot between Hubli-Dharwad. A leading construction company has come forward to complete the hospital works from concept to commissioning in 9 months. The promoters are willing to spend a premium to complete the hospital in 9 month time and are not particular about type of construction, ie, RCC, Steel frame etc. The key requirements are as follows:

vi) 200 bed hospital of which 40 are for critical care (ICU), 40 for pre and post Operative care

vii) 4 Operation Theatres - 2 Major (Minimum 800 SFT each) and 2 minor (minimum 400 sft each)

viii) One full fledged Diagnostic laboratory (1500 Sft)

ix) One 24x7 pharmacy (360 Sft min)

x) Doctors rooms, Nurses enclosures, Change rooms

xi) Office with billing counters (min 2000 sft) for all administrative staff

xii) Wheel chair parking bays, Stretcher parking bays in all floors

xiii) One Cafetaria with 50 person capacity

xiv) One conference room with Multimedia equipment (300 sft min)

xv) Parking for ambulances, 4 wheelers, two wheelers

xvi) Reception and enquiry counter

xvii) All amenities should be accessible for disabled persons

xviii) Incinerator, Waste storage and disposal area

xix) Generator and fuel storage area

Discuss

vii) The various alternative approaches available to complete the hospital.

viii) Look into National Building Code and BIS standards for arriving at approximate (+/- 10%) super built-up area required, amenities to be planned

ix) The various phases of the project according to Project lifecycle and durations

x) Prepare the detailed WBS, Project Organisation required and Project Dairy template

xi) Prepare a Project Plan with risks involved and the risk management plan.

xii) Estimate the cost of time overrun if the project is delayed by 114 calendar days due to issues with approvals

Case Study 2b:

For case study 2 above, prepare an Implementation Plan using a spreadsheet software.

Discuss
i) What happens if a pandemic affects the project in its 7th Month. How do you mitigate the possible issues in implementation?

ii) What happens if during the fourth month of projects the client decides to reduce funds for the month by 50%?

Case Study 2c:

For case study 2 above, prepare a Critical Path method Chart (CPM) showing all main activities in the WBS with milestones.

Discuss

xix) What happens if the client decides to complete the ground floor roof 15 days earlier?

xx) What happens if the client reduces the inflow of project funds by 50% for the month 4?

xxi) Write an Audit report for the project at the end of 6th month

Case Study 3:

This will be done as a student activity and has two components.

xiv) Research on 3D printing in any industry and prepare a three page article

xv) Study usage of Drones in different Industries and evaluate the Cost benefits of using the same for any one scenario.

Model Question Paper

I A Test (CIE)

<table>
<thead>
<tr>
<th>Programme:</th>
<th>Semester: I</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course:</td>
<td>Max Marks: 30</td>
</tr>
<tr>
<td>Course Code:</td>
<td>Duration: 1 Hr 20 minutes</td>
</tr>
<tr>
<td>Name of the course coordinator:</td>
<td>Test: I/II/III</td>
</tr>
</tbody>
</table>

Note: Answer one full question from each section. One full question carries 10 marks.

<table>
<thead>
<tr>
<th>Qn.No</th>
<th>Question</th>
<th>CL</th>
<th>CO</th>
<th>PO</th>
<th>Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.a)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>c)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Section-1
Section-2

<table>
<thead>
<tr>
<th>2.a)</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>b)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>c)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Section-3

<table>
<thead>
<tr>
<th>3.a)</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>b)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>c)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4.a)</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>b)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>c)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>5.a)</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>b)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>c)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>6.a)</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>b)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>c)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Qn.No</td>
<td>Question</td>
<td>CL</td>
</tr>
<tr>
<td>-------</td>
<td>----------</td>
<td>----</td>
</tr>
<tr>
<td></td>
<td>Section-1</td>
<td></td>
</tr>
<tr>
<td>1.a)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>b)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.a)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>b)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Section-2</td>
<td></td>
</tr>
<tr>
<td>3.a)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>b)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.a)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>b)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Section-3</td>
<td></td>
</tr>
<tr>
<td>5.a)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>b)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.a)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>b)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Section-4</td>
<td></td>
</tr>
<tr>
<td>7.a)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>b)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.a)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>b)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Section-5</td>
<td></td>
</tr>
<tr>
<td>9.a)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>b)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.a)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>b)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Government of Karnataka
Department of Collegiate and Technical Education
Board of Technical Examinations, Bangalore

<table>
<thead>
<tr>
<th>Course Code</th>
<th>20SC01T</th>
<th>Semester</th>
<th>I/II</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course Title</td>
<td>ENGINEERING MATHEMATICS</td>
<td>Course Group</td>
<td>Core</td>
</tr>
<tr>
<td>No. of Credits</td>
<td>4</td>
<td>Type of Course</td>
<td>Lecture</td>
</tr>
<tr>
<td>Course Category</td>
<td>Theory</td>
<td>Total Contact Hours</td>
<td>4Hrs Per Week</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>52Hrs Per Semester</td>
</tr>
<tr>
<td>Prerequisites</td>
<td>10 Level Mathematics</td>
<td>Teaching Scheme</td>
<td>(L:T:P) = 4:0:0</td>
</tr>
<tr>
<td>CIE Marks</td>
<td>50</td>
<td>SEE Marks</td>
<td>50</td>
</tr>
</tbody>
</table>

RATIONALE

Engineering Mathematics specification provides students with access to important mathematical ideas to develop the mathematical knowledge and skills that they will draw on in their personal and work lives. The course enables students to develop mathematical conceptualization, inquiry, reasoning, and communication skills and the ability to use mathematics to formulate and solve problems in everyday life, as well as in mathematical contexts. At this level, the mathematics curriculum further integrates the three content areas taught in the higher grades into three main learning areas: Algebra; Measurement of angles and Trigonometry and Calculus.

1. **COURSE SKILL SET**
 Student will be able to:
 1. Solve system of linear equations arise in different engineering fields
 2. Incorporate the knowledge of calculus to support their concurrent and subsequent engineering studies
 3. Adept at solving quantitative problems
 4. Ability to understand both concrete and abstract problems
 5. Proficient in communicating mathematical ideas
 6. Detail-oriented

2. **COURSE OUT COMES**
 At the end of the course, student will be able to

 | CO1 | Determine the inverse of a square matrix using matrix algebra. Apply the concepts of matrices and determinants to solve system of linear equations and find eigen values associated with the square matrix. |
 | CO2 | Find the equation of straight line in different forms. Determine the parallelism and perpendicularity of lines. |
 | CO3 | Calculate trigonometric ratios of allied angles and compound angles. Transform sum or difference of trigonometric ratios into product and vice versa. |
CO4 Differentiate various continuous functions and apply the concept in real life situations.

CO5 Integrate various continuous functions and apply the concept in evaluating the area and volume through definite integrals.

3. SUGGESTED SPECIFICATION TABLE WITH HOURS & MARKS

<table>
<thead>
<tr>
<th>UNIT NO</th>
<th>UNIT TITLE</th>
<th>TEACHING HOURS</th>
<th>DISTRIBUTION (THEORY)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>R LEVEL</td>
</tr>
<tr>
<td>1</td>
<td>Matrices and Determinants</td>
<td>10</td>
<td>8</td>
</tr>
<tr>
<td>2</td>
<td>Straight lines</td>
<td>10</td>
<td>8</td>
</tr>
<tr>
<td>3</td>
<td>Trigonometry</td>
<td>10</td>
<td>8</td>
</tr>
<tr>
<td>4</td>
<td>Differential Calculus and applications</td>
<td>11</td>
<td>8</td>
</tr>
<tr>
<td>5</td>
<td>Integral Calculus and applications</td>
<td>11</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>52</td>
<td>40</td>
</tr>
</tbody>
</table>

Legends: R = Remember; U = Understand; A = Apply and above levels (Bloom’s revised taxonomy)

4. DETAILS OF COURSE CONTENT

The following topics/subtopics is to be taught and assessed in order to develop Unit Skill sets for achieving CO to attain identified skill sets.

<table>
<thead>
<tr>
<th>UNIT NO</th>
<th>Unit skill set (In cognitive domain)</th>
<th>Topics/Subtopics</th>
<th>Hours L-T-P</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-1</td>
<td>MATRICES AND DETERMINANTS</td>
<td>1.1 Matrix and types</td>
<td>10-0-0</td>
</tr>
<tr>
<td></td>
<td>Use algebraic skills which are essential for the study of systems of linear equations, matrix algebra and eigen values</td>
<td>1.2 Algebra of Matrices (addition, subtraction, scalar multiplication and multiplication)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.3 Evaluation of determinants of a square matrix of order 2 and 3. Singular matrices</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.4 Cramer’s rule for solving system of linear equations involving 2 and 3 variables</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.5 Adjoint and Inverse of the non-singular matrices of order 2 and 3</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.6 Characteristic equation and Eigen values of a square matrix of order 2</td>
<td></td>
</tr>
</tbody>
</table>
| UNIT-2 STRAIGHT LINES | 2.1 Slope of a straight line
2.2 Intercepts of a straight line
2.3 Intercept form of a straight line
2.4 Slope-intercept form of a straight line
2.5 Slope-point form of a straight line
2.6 Two-point form of a straight line
2.7 General form of a straight line
2.8 Angle between two lines and conditions for lines to be parallel and perpendicular
2.9 Equation of a straight line parallel to the given line
2.10 Equation of a straight line perpendicular to the given line |
| --- | --- |
| Ø Able to find the equation of a straight line in different forms
Ø Determine whether the lines are parallel or perpendicular | |
| UNIT-3 TRIGONOMETRY | 3.1 Concept of angles, their measurement, Radian measure and related conversions.
3.2 Signs of trigonometric ratios in different quadrants (ASTC rule)
3.3 Trigonometric ratios of allied angles (definition and the table of trigonometric ratios of standard allied angles say 90°±θ, 180°±θ, 270°±θ and 360°±θ)
3.4 Trigonometric ratios of compound angles (without proof)
3.5 Trigonometric ratios of multiple angles
3.6 Transformation formulae |
| Ø Use basic trigonometric skills in finding the trigonometric ratios of allied and compound angles
Ø Able to find all the measurable dimensions of a triangle | |
| UNIT-4 DIFFERENTIAL CALCULUS AND APPLICATIONS | 4.1 Derivatives of continuous functions in an interval (List of formulae)
4.2 Rules of differentiation
4.3 Successive differentiation (up to second order)
4.4 Applications of differentiation |
| Ø Able to differentiate algebraic, exponential, trigonometric, logarithmic and composite functions
Ø Able to find higher order derivatives
Ø Understand and work with derivatives as rates of change in mathematical models
Ø Find local maxima and minima of a function | |
| UNIT-5 INTEGRAL CALCULUS AND APPLICATIONS | 5.1 List of standard integrals and Basic rules of integration
5.2 Evaluation of integrals of simple function and their combination
5.3 Methods of integration
5.4 Concept of definite integrals
5.5 Applications of definite integrals |
| Ø Understand the basic rules of integration and Evaluate integrals with basic integrands.
Ø Identify the methods to evaluate integrands
Ø Apply the skills to evaluate integrals representing areas and volumes | |
| Department of Collegiate & Technical Education Bengaluru-560001 | Page 94 |
5. MAPPING OF CO WITH PO

<table>
<thead>
<tr>
<th>CO</th>
<th>Course Outcome</th>
<th>PO Mapped</th>
<th>UNIT Linked</th>
<th>CL R/U/A</th>
<th>Theory in Hrs</th>
<th>TOT AL</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td>Determine the inverse of a square matrix using matrix algebra. Apply the concepts of matrices and determinants to solve system of linear equations and find eigen values associated with the square matrix.</td>
<td>1, 7</td>
<td>1</td>
<td>R/U/A</td>
<td>10</td>
<td>40</td>
</tr>
<tr>
<td>CO2</td>
<td>Find the equation of straight line in different forms. Determine the parallelism and perpendicularity of lines.</td>
<td>1, 7</td>
<td>2</td>
<td>R/U/A</td>
<td>10</td>
<td>40</td>
</tr>
<tr>
<td>CO3</td>
<td>Calculate trigonometric ratios of allied angles and compound angles. Transform sum (difference) of trigonometric ratios into product and vice versa.</td>
<td>1, 7</td>
<td>3</td>
<td>R/U/A</td>
<td>10</td>
<td>40</td>
</tr>
<tr>
<td>CO4</td>
<td>Differentiate various continuous functions and apply the concept in real life situations.</td>
<td>1, 3, 7</td>
<td>4</td>
<td>R/U/A</td>
<td>11</td>
<td>40</td>
</tr>
<tr>
<td>CO5</td>
<td>Integrate various continuous functions and apply the concept in evaluating the area and volume through definite integrals.</td>
<td>1, 3, 7</td>
<td>5</td>
<td>R/U/A</td>
<td>11</td>
<td>40</td>
</tr>
</tbody>
</table>

Course CO's

Programme Outcomes (PO's)

<table>
<thead>
<tr>
<th>CO's</th>
<th>Programme Outcomes (PO's)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td>CO1</td>
<td>3</td>
</tr>
<tr>
<td>CO2</td>
<td>3</td>
</tr>
<tr>
<td>CO3</td>
<td>3</td>
</tr>
<tr>
<td>CO4</td>
<td>3</td>
</tr>
<tr>
<td>CO5</td>
<td>3</td>
</tr>
</tbody>
</table>

Level 3- Highly Mapped, Level 2-Moderately Mapped, Level 1-Low Mapped, Level 0- Not Mapped
7. INSTRUCTIONAL STRATEGY

These are sample Strategies, which teacher can use to accelerate the attainment of the various course outcomes

1. Explicit instruction will be provided in intervention classes or by using different differentiation strategies in the main classroom.

2. Lecturer method (L) does not mean only traditional lecture method, but different type of teaching method and media that are employed to develop the outcomes.

3. Observing the way their more proficient peers use prior knowledge to solve current challenges and persevere in problem solving will help struggling students to improve their approach to engaging with rich contextual problems.

4. Ten minutes a day in homeroom, at the end of class, or as a station in a series of math activities will help students build speed and confidence.

5. Topics will be introduced in a multiple representation.

6. The teacher is able to show different ways to solve the same problem and encourage the students to come up with their own creative ways to solve them.

7. In a perfect world, teacher would always be able to demonstrate how every concept can be applied to the real world - and when that’s possible, it helps improve the students' understanding. When a concept cannot be applied in that manner, we can still share how it might be applied within mathematics.

8. SUGGESTED LEARNING RESOURCES:

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>Author</th>
<th>Title of Books</th>
<th>Publication/Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Comprehensive Mathematics</td>
<td>Comprehensive Mathematics Vol. I & II</td>
<td>Laxmi Publications, Delhi</td>
</tr>
</tbody>
</table>
9. COURSE ASSESSMENT AND EVALUATION CHART

<table>
<thead>
<tr>
<th>Sl.No.</th>
<th>Assessment</th>
<th>Duration</th>
<th>Max marks</th>
<th>Conversion</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>CIE Assessment 1 (Written Test -1) At the end of 3 4 week</td>
<td>80 minutes</td>
<td>30</td>
<td>Average of three written tests</td>
</tr>
<tr>
<td>2</td>
<td>CIE Assessment 2 (Written Test -2) At the end of 7 week</td>
<td>80 minutes</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>CIE Assessment 3 (Written Test -3) At the end of 13 week</td>
<td>80 minutes</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>CIE Assessment 4 (MCQ/Quiz) At the end of 5 week</td>
<td>60 minutes</td>
<td>20</td>
<td>Average of three</td>
</tr>
<tr>
<td>5</td>
<td>CIE Assessment 5 (Open book Test) At the end of 9 week</td>
<td>60 minutes</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>6</td>
<td>CIE Assessment 6 (Student activity/Assignment) At the end of 11 week</td>
<td>60 minutes</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total Continuous Internal Evaluation (CIE) Assessment</td>
<td></td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Semester End Examination (SEE) Assessment (Written Test)</td>
<td>3 Hours</td>
<td>100</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>Total Marks</td>
<td></td>
<td>100</td>
<td></td>
</tr>
</tbody>
</table>

Note:
1. SEE (Semester End Examination) is conducted for 100 Marks theory courses for a time duration of 3 Hours.
2. Three CIE (written test), each of 30 marks for a time duration of 80 minutes shall be conducted. Also, three CIE (MCQ or Quiz/Open book test/student activity or assignment) each of 20 marks for the time duration of 60 minutes shall be conducted. Any fraction at any stage during evaluation will be rounded off to the next higher digit.
3. Assessment of assignment and student activity is evaluated through appropriate rubrics by the respective course coordinator. The secured mark in each case is rounded off to the next higher digit.
10 DETAILED COURSE CONTENT

<table>
<thead>
<tr>
<th>UNIT NO AND NAME</th>
<th>DETAILED COURSE CONTENT</th>
<th>CO</th>
<th>PO</th>
<th>CONTACT HRS</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 MATRICES AND DETERMINANTS</td>
<td>Definition and types of matrices</td>
<td>1</td>
<td>1,7</td>
<td>1</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>Algebra of Matrices (addition, subtraction and scalar multiplication) problems</td>
<td>1</td>
<td>1,7</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Multiplication of Matrices(problems)</td>
<td>1</td>
<td>1,7</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Evaluation of 2x2 ,3x3 determinants and Singular matrices and problems in finding unknown variable</td>
<td>1</td>
<td>1,7</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cramer’s rule to solve system of linear equation with 2 and 3 variables</td>
<td>1</td>
<td>1,7</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cramer’s rule to solve system of linear equation with 2 and 3 variables.problems</td>
<td>1</td>
<td>1,7</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Minors, Cofactors of elements of square matrices of order 2 and 3</td>
<td>1</td>
<td>1,7</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Adjoint of a square matrix(2x2 and 3x3),Inverse of a non singular square matrix</td>
<td>1</td>
<td>1,7</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Adjoint of a square matrix(2x2 and 3x3),Inverse of a non singular square matrix and problems</td>
<td>1</td>
<td>1,7</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Characteristic equation and eigen values of a 2x2 matirx and problems</td>
<td>1</td>
<td>1,7</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2 STRAIGHTLINES</td>
<td>Slope of the straight line(provided with inclination and two points on the line as well) and problems</td>
<td>2</td>
<td>1,7</td>
<td>1</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>Intercepts of a straight line and problems</td>
<td>2</td>
<td>1,7</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Intercept form of a straight line and problems</td>
<td>2</td>
<td>1,7</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Slope-intercept form of a straight line and problems</td>
<td>2</td>
<td>1,7</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Slope-point form of the straight line and problems</td>
<td>2</td>
<td>1,7</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Two-point form of a straight line and problems</td>
<td>2</td>
<td>1,7</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>General form of a straight line.problems on finding slope and intercepts.</td>
<td>2</td>
<td>1,7</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Angle between two straight lines and conditions for the lines to be parallel and perpendicular and problems</td>
<td>2</td>
<td>1,7</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Equation of a line parallel to the given line and problems</td>
<td>2</td>
<td>1,7</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Equation of a line perpendicular to the given line.problems</td>
<td>2</td>
<td>1,7</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>
TRIGONOMETRY

<table>
<thead>
<tr>
<th>Concept</th>
<th>Radian measures and related conversions (degree to radian and vice-versa) and problems</th>
<th>3</th>
<th>1,7</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Signs of trigonometric ratios in different quadrants (ASTC rule)</td>
<td>3</td>
<td>1,7</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Trigonometric ratios of allied angles (definition and the table of trigonometric ratios of standard allied angles say $90^\circ \pm \theta$, $180^\circ \pm \theta$, $270^\circ \pm \theta$ and $360^\circ \pm \theta$)</td>
<td>3</td>
<td>1,7</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Problems on allied angles. (proving identities)</td>
<td>3</td>
<td>1,7</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Problems on allied angles. (Finding values of x in an identity)</td>
<td>3</td>
<td>1,7</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Trigonometric ratios of compound angles (without proof)</td>
<td>3</td>
<td>1,7</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Trigonometric ratios of multiple angles ($\sin2A$, $\cos2A$, $\tan2A$, $\sin3A$, $\cos3A$ and $\tan3A$)</td>
<td>3</td>
<td>1,7</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Problems on multiple angles $\sin2A$, $\cos2A$, $\tan2A$, $\sin3A$, $\cos3A$ and $\tan3A$</td>
<td>3</td>
<td>1,7</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Transformation formulae (without proof) as sum to product. (Simple problems)</td>
<td>3</td>
<td>1,7</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Transformation formulae (without proof) as product to sum. (Simple problems)</td>
<td>3</td>
<td>1,7</td>
<td>1</td>
</tr>
</tbody>
</table>

DIFFERENTIAL CALCULUS AND APPLICATIONS

<table>
<thead>
<tr>
<th>Definition</th>
<th>Listing the derivatives of standard functions. (Algebraic, trigonometric, exponential, logarithmic and inverse trigonometric functions)</th>
<th>4</th>
<th>1,3,7</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Add. and sub.</td>
<td>Addition and subtraction rule of differentiation and problems</td>
<td>4</td>
<td>1,3,7</td>
<td>1</td>
</tr>
<tr>
<td>Product</td>
<td>Product rule and quotient rule of differentiation and problems</td>
<td>4</td>
<td>1,3,7</td>
<td>1</td>
</tr>
<tr>
<td>Product</td>
<td>Product rule and quotient rule of differentiation and problems</td>
<td>4</td>
<td>1,3,7</td>
<td>1</td>
</tr>
<tr>
<td>Composite</td>
<td>Composite functions and their derivatives. (CHAIN RULE)</td>
<td>4</td>
<td>1,3,7</td>
<td>1</td>
</tr>
<tr>
<td>Composite</td>
<td>Composite functions and their derivatives. (CHAIN RULE). Problems</td>
<td>4</td>
<td>1,3,7</td>
<td>1</td>
</tr>
<tr>
<td>Successive</td>
<td>Successive differentiation up to second order</td>
<td>4</td>
<td>1,3,7</td>
<td>1</td>
</tr>
<tr>
<td>Slope</td>
<td>Slope of the tangent and normal to the given curve and their equations and problems</td>
<td>4</td>
<td>1,3,7</td>
<td>1</td>
</tr>
<tr>
<td>Topic</td>
<td>Weightage</td>
<td>Reference Numbers</td>
<td></td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>-----------</td>
<td>-------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rate measure: velocity and acceleration at a point of time and problems</td>
<td>4</td>
<td>1,3,7,1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Local Maxima and Minima of a function</td>
<td>4</td>
<td>1,3,7,1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Local Maxima and Minima of a function. Problems</td>
<td>4</td>
<td>1,3,7,1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Definition of an indefinite integral. Listing the Integrals of standard functions. (Algebraic, trigonometric, exponential, logarithmic and inverse trigonometric functions)</td>
<td>5</td>
<td>1,3,7,1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rules of Integration. Evaluation of integrals with simple integrands and their combinations</td>
<td>5</td>
<td>1,3,7,1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rules of Integration. Evaluation of integrals with simple integrands and their combinations. Problems</td>
<td>5</td>
<td>1,3,7,1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Evaluation of integrals with simple integrands and their combinations. Problems</td>
<td>5</td>
<td>1,3,7,1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Evaluation of integrals by Substitution method</td>
<td>5</td>
<td>1,3,7,1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Evaluation of integrals by Integration by parts</td>
<td>5</td>
<td>1,3,7,1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Evaluation of integrals by Integration by parts. Problems</td>
<td>5</td>
<td>1,3,7,1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Definition of definite integrals and their evaluation</td>
<td>5</td>
<td>1,3,7,1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Evaluation of Definite integrals. Problems</td>
<td>5</td>
<td>1,3,7,1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Area enclosed by the curves by integral method</td>
<td>5</td>
<td>1,3,7,1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Volume generated by the curve rotated about an axis by integral method</td>
<td>5</td>
<td>1,3,7,1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
First Semester Examination, Model Question Paper – 2020

Engineering Mathematics

Duration: 3 Hours | Subject Code: 20SC01T | Max. Marks: 100

Instruction: Answer one full question from each section. One full question carries 20 marks.

SECTION – 1

1. a) If the matrix \[
\begin{bmatrix}
2 & 4 & 6 \\
2 & x & 2 \\
6 & 8 & 14
\end{bmatrix}
\] is singular then find \(x \).

4

b) Find the \(A^2 \) for the matrix \[
\begin{bmatrix}
1 & 3 & 4 \\
-1 & 2 & 1 \\
0 & 3 & 3
\end{bmatrix}
\].

5

c) Solve \(2x - y = 3 \) and \(x + 2y = 4 \) by using determinant method.

5

d) Find the inverse of the matrix \[
\begin{bmatrix}
2 & 3 & 1 \\
-1 & 2 & 1 \\
5 & 4 & 3
\end{bmatrix}
\].

6

2. a) If \(A = \begin{bmatrix} 2 & -1 \\ 0 & 1 \\ 1 & 3 \end{bmatrix} \) and \(B = \begin{bmatrix} 1 & -3 & 4 \\ -1 & -1 & 1 \end{bmatrix} \) then find \((AB)^T \).

4

b) Verify whether \(AB = BA \) for the matrices \(A = \begin{bmatrix} 1 & 0 & 5 \\ -1 & 2 & 1 \end{bmatrix} \) and \(B = \begin{bmatrix} 3 & -1 & 4 \\ 0 & -1 & 1 \\ 2 & 4 & -2 \end{bmatrix} \).

5

c) Find the Adjoint of the matrix \(A = \begin{bmatrix} 1 & 3 & 4 \\ -1 & 2 & 1 \end{bmatrix} \).

5

d) Find the characteristic equation and eigen values for the matrix \[
\begin{bmatrix}
1 & 2 \\
3 & 1
\end{bmatrix}
\].

6
SECTION – 2

3. a) If the straight line is passing through the points (1, 2) and (3, 5) then find the slope of the line.

Write the standard intercept form of the straight line and hence find the equation of the straight line whose x and y intercepts are 2 and 3 respectively.

b) Write the standard slope-intercept form of a straight line. Find the equation of the straight line passing through the point (3, 5) and slope 4 units.

c) Find the equation of the straight line parallel to the line passing through the points (1, 3) and (4, 6).

4. a) i) If a line inclined at 45° with x-axis find its slope. ii) Write the x and y intercept of the line 2x+3y=10.

b) Find the equation of the straight line whose angle of inclination is 45° and passing through the origin.

c) Find the equation of the straight line perpendicular to the line 2x+6y=3 and with the y intercept 2 units.

d) Find the acute angle between the lines 7x-4y=0 and 3x-11y+5=0.

SECTION – 3

5. a) Express 75° in radian measure and 3π/2 in degree.

b) Prove that \(\cos(A + B) \cos(A - B) = \cos^2 A - \sin^2 B \).

c) Show that \(\cos 2\theta = 2\cos^2 \theta - 1 \).

d) Find the value of \(\sin 120° \cdot \cos 330° - \sin 240° \cdot \cos 390° \) without using calculator.

6. a) Find the value of \(\sin 15° \).
b Simplify \(\frac{\cos(360^\circ - A) \tan(360^\circ + A)}{\cot(270^\circ - A) \sin(90^\circ + A)}\).

5

c Prove that \(\sin 3\theta = \sin 3\theta - 4 \sin^3 \theta\).

5

d Prove that \(\sin 20^\circ \cdot \sin 40^\circ \cdot \sin 80^\circ = \frac{\sqrt{3}}{8}\).

6

SECTION – 4

7 a Find the derivative of \(y = x^2 + e^{2x} + \cos 2x - 2 \log x\) with respect to \(x\).

4

b Find \(\frac{dy}{dx}\) of \(y = \frac{\sec x + \tan x}{\sec x - \tan x}\).

5

c Find \(\frac{dy}{dx}\) of \(y = \tan^{-1}\left(\frac{1 + x}{1 - x}\right)\).

5

d If the \(s = 2x^3 + 3x + 4\) represents the displacement of the particle in motion at time \(x\), then find the velocity of the particle at \(x = 2\) secs and acceleration at \(x = 3\) secs.

6

8 a Find \(\frac{dy}{dx}\) of \(y = 3x^4 + 4 \log x + 2e^{3x} + \tan^{-1} x\).

4

b If \(y = e^{2x} \sin 3x\) then find \(\frac{dy}{dx}\).

5

c Find \(\frac{d^2y}{dx^2}\) if \(y = 3 \sin x + 4 \cos x\) at \(x = 1\).

5

d Find the equation of tangent and normal to the curve \(y = x^2\) at the point \((1, 1)\).

6
SECTION – 5

9 a Evaluate \(\int_{-\pi/2}^{\pi/2} (x-1)(x+1)dx \).

b Evaluate \(\int_0^\pi \sin^2 x \, dx \).

c Evaluate \(\int x \sin x \, dx \).

d Find the area bounded by the curve \(y = 4x - x^2 - 3 \), x-axis and ordinates \(x = 1 \) and \(x = 3 \).

10 a Evaluate \(\int_0^2 e^x \, dx \).

b Evaluate \(\int x \, dxe^{x^2/2} \).

c Evaluate \(\int_1^2 (x+2) \, dx \).

d Find the volume of the solid generated by revolving the curve \(y = \sqrt{x^2 + 5x} \) between \(x = 1 \) and \(x = 2 \).
Preamble

Today, Communication is a very important skill for the success of every millennial student. Millennials affinity to use digital media for communication, changing career and working landscapes, and greater competition in colleges and workplaces makes enhancing student communication skills beyond language a must. Rote learning a few tips or tricks the night before an interview or performance review won’t do the job if students are trying to make an impression in highly collaborative workplaces of the future. Expectations from students aspiring to be part of such future workplaces are that they have not just good verbal and non-verbal communication skills but also a good understanding of how to use modern tools for effective communication.

Scope

To enable students to communicate clearly and effectively, by improving their verbal and non-verbal communication skills, as well as enhancing interpersonal skills and knowledge of appropriate tools for specific communication strategies.

Course Objectives

The objectives of communication skills course are:

- Build better communication skills: oral and written expressions and body language
- Enable critical thinking
- Empower with active listening skills
- Enable team work/collaboration

Instructional Strategy

To achieve course objectives, it is important to provide the blended mode of instruction for each of the concepts. This blended mode of instruction enables and empowers students with:

- **Understanding of Concept (Theory):**
 - Through definitions, discussions, explanation, conclusions.
 - Through demonstrations: Show films or other workplace clips that model various conversation skills. This provides greater clarity of the concept by...
- Enabling observation skills
- Helping in expression of gesture
- building confidence

Application of Concept (Learning by doing): It is imperative that to become a good communicator, the skills have to be built by applying the concept in the hypothetically created real life situations. Students are encouraged to participate in each of these activities during lab session to help build the effective communication skills.
 - Use of technology tools like audio books, apps like voice thread or paper telephone, etc.
 - To help in workplace conversions.
 - To increase active listening, pronunciation
 - To help in voice modulation
 - Group discussion
 - Reinforce active listening
 - Enable group debate to imbibe healthy communication strategies
 - Sharpen the skills of “Asking clarifying questions”
 - Sharpen Feedback / Response skills
 - Time management skills
 - Group presentations/peer reviews
 - Enable team work
 - Assess concept understanding
 - Sharpen both oral and written communication skills
 - Group activities:
 - foster critical thinking
 - enable reflective learning
 - Tools usage:
 - Understand the difference between a Dictionary and a Thesaurus
 - Understand “When” and “How” to use these tools for communication

Course Outcomes

After completion of this course, the student shall be able to;

- Communicate
 - Identify audience (colleagues, management, customers/vendors) and use the right methodologies for communication using the right terminology, names, grades and other nomenclature pertaining to the trade, tools and specific equipment.

- Write
 - in at least one language correctly
 - basic level notes and observations
 - job cards, work sheets, basic report writing and responding to emails, simple presentations, job applications, resume

- Read
 - Technical manuals, task sheets/job orders, policies and regulations pertinent to the job, including OEM guidelines.
 - all instructions given in memos, manuals, documents or those put up as posters across the premises
 - safety precautions mentioned in equipment manuals and panels to understand the potential risks associated

- Question
 - Ask right questions
 - Use different ways of asking questions
 - Close ended
• Present
 o With right Posture & Gesture
 o With greater concept/content clarity
 o With high confidence
 o With voice modulation to capture the attention of audience

• Use technology tools
 o Office productivity
 ▪ Word : Report writing
 ▪ PowerPoint : Creating effective presentations
 ▪ Excel : Data handling/Charts

Course Content
The following are the various units to be taught and assessed in order to ensure the student is able to demonstrate the Course Outcomes mentioned in the Course Outcome section.

Pre-assessment:
Teachers are required to administer pre-assessment before starting the actual instruction. This helps in gathering information about students’ like their attitude, beliefs, interests, and learning abilities.

Pre assessment expectations:

• To assess current language skill (Pronunciation, usage, sentence formation)
• To assess their ability to comprehend and respond to the instruction
• To assess their interest towards accepting ideas and learning
• To assess their current communication skills: asking questions, listening, communicating with confidence
UNIT 1: English – Introduction

Learning outcome:
Learn English pronunciation, functional grammar concepts & Reading. To gain confidence in spoken English. This section also covers phonemic awareness, grammar rules to set a strong base for application mode of communication.

| Phonemic awareness | Going over 42 sounds | Examining the understanding of sounds
Exercising patterns (Consonant and Vowel blending: CVC words)
Pronunciation
 - List of words given above (Commonly used words)
 - Diction (speech) |
|--------------------|---------------------|-----------------------------------|
| Functional Grammar Concepts | Revision of Grammar concepts | Parts of speech
Sentence structure
Examples of right sentences
Gender, Singular, Plural
Usage of voice (active and passive) and tenses |
| Comprehension activities | Reading conversations (check the unitwise activity table) | Written test for each comprehension |
| | | 0:2:2 |
| | | 2:0:0 |
| | | 0:1:0 |
| | | 0:1:0 |
| | | 0:2:0 |
| | | 0:0:2 |

UNIT 2: Communication

Lesson outcome:
At the end of the session:
- Students should be able to
 - Understand the communication process, influence of voice/tone, logical organization of thought, comprehension, listening skills.
 - Understand the basic building blocks of communication and strategies for working with each of these blocks.
 - Learn about carrying self, etiquettes of communication.
 - Build positive attitude about self and towards handling communication.
 - Learn the process for effective communication, problem solving techniques, to be confident communicator.

INTRODUCTION:

<table>
<thead>
<tr>
<th>INTRODUCTION</th>
<th>What is communication? Why communication? How do we communicate? Communication Theory and Process</th>
<th>How communication happens?</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1: 2:0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0:2:2</td>
</tr>
</tbody>
</table>

- Pictorial representation of communication framework
Barriers to communication

- Elements of communication: sender, receiver, message
- Refer to activity in Unit activity section.

Language
- Lack of linguistic ability
- Grammar

Context
- Psychology
- Physiology

Systematic
- Inefficient or inappropriate information systems
- Lack of communication channel
- Lack of understanding of the roles and responsibilities

Attitude
- Perceptions
- Preconceived notions

0:2:2 (video clip play, content tutorial, role play)
<table>
<thead>
<tr>
<th>Building blocks of communication</th>
<th>People</th>
<th>Message</th>
<th>Context</th>
<th>Listening</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>People</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Empathising with sender’s or receiver’s perception</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intent & Impact on the sender/receiver</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Think – Feel – Do model</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Message</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Message channels:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inperson, email, memo, report</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Be aware of Mental Filters</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Level of understanding/knowledge</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Personal concerns</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pre conceived notions</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Organize message:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Critical thinking: organize your thoughts?</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Use following strategy:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Who</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• What</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• When</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Why</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• How</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Bundle Primary and Secondary information</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Mindful about non-verbal message</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Tone of voice</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Examples of Types of messages:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Inform</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Persuade</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Cyclical</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Avoiding Miscommunication:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Evaluate (Checking for)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>understanding of the intent of the message with the receiver – by asking clarifying questions?</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Context:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Define context</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Importance of context</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tune into context</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Timing</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Location</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Relationship</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Listening:

Importance of listening

Barrier to listening:
- Mental filters
- Multitasking
- Information overload

Strategies for listening:
- Recall
- Acknowledge
- Summarize
- Listen with eyes for connecting to non-verbal connection
- Empathize
- Pay attention
- Ask clarifying questions

Effective Listening Behaviors:
- Maintaining relaxed body posture
- Leaning slightly forward if sitting
- Facing person squarely at eye level
- Maintaining an open posture
- Maintaining appropriate distance
- Offering simple acknowledgements
- Reflecting meaning (paraphrase)
- Reflecting emotions
- Using eye contact
- Providing non-distracting environment

Behaviors that hinder effective listening
- Acting distracted
- Autobiographical (Telling your own story without acknowledging theirs first)
- No response
- Invalidating response, put downs
- Interrupting
- Criticizing
- Judging
- Giving advice/solutions
- Changing the subject
- Reassuring without acknowledgment
UNIT 3: Verbal Communication

Lesson outcome:
At the end of this session, Students should be able to:

- Understand and define the communication framework structure for each of the verbal communication (in person/telephonic/video conference).
- Understand and apply the verbal communication techniques.
- Use technical jargons in communication.
- Use right body language during verbal communication
- Understand and practice the Active Listening techniques
- Confidently articulate or present the content
<table>
<thead>
<tr>
<th>Different types of verbal communication:</th>
<th>In person</th>
<th>Telephonic</th>
<th>Video conference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Listening Skills</td>
<td>Effective Listening behaviors</td>
<td>Use ABC's : Accuracy, Brevity, Clarity</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>o Introduction</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>o Main body of the content</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>o Summary</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Use voice/tone effectively</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Reinforcement of Listening skills: Active and Empathetic listening skills</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Body language</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>o Eye contact</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>o Body posture</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>o Gesture</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>o Facial expression</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>o Space</td>
<td></td>
</tr>
<tr>
<td>Behaviours that hinder effective listening</td>
<td>Effective Listening Behaviours:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Maintaining relaxed body posture</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Leaning slightly forward if sitting</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Facing person squarely at eye level</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Maintaining an open posture</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Maintaining appropriate distance</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Offering simple acknowledgements</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Reflecting meaning (paraphrase)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Reflecting emotions</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Using eye contact</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Providing non-distracting environment</td>
<td></td>
</tr>
<tr>
<td>Using technical jargons:</td>
<td>Behaviours that hinder effective listening</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Assignment based project encouraging pupil to use the technical terms in</td>
<td>• Acting distracted</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Autobiographical (Telling your own story without acknowledging theirs first)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• No response</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Invalidating response, put downs</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Interrupting</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Criticizing</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Judging</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Giving advice/solutions</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Changing the subject</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Reassuring without acknowledgment</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0:2:4</td>
<td></td>
</tr>
</tbody>
</table>
the written and verbal communication. This requires understanding of the core concepts (from subject teacher) and integrating the concept with communication concepts to gain the real time application knowledge.
UNIT4: Non-Verbal Communication:

Lesson outcome:
At the end of this unit, students should be able to:

- Understand the importance of Body language and its impact.
- Use the strategies for effective body language.
- Understand the relevance of different elements of emails and how to use them.
- Develop the confidence in presenting written content in logical and organized manner with a definitive email framework.
- Write different email formats confidently: Job application, Request email, apology email, email responses/feedback.
- Confidently write Resume/Curriculum-vitae, Reports, Formal letters and portfolio.
- Confidently communicate using technical jargons and with increased vocabulary.
Body Language

Tips:
- Keep appropriate distance
- Take care of your appearance
- Maintain eye contact
- Smile genuinely

Do's:
- Smile
- Stand up confident and straight
- Use appropriate hand gestures
- Make eye contact with audience
- Hold neat note cards while presenting content
- Read off notes
- Read off slides

Don'ts:
- Point at anyone
- Rock backwards and forwards
- Pace across front of room
- Read off notes

Written Communication

Emails:
- Structured framework for writing formal emails to emphasize professional communication in English

Strategies:
- Introduction - Expect the reader to walk into the letter and this crucial role as it provides a first impression to the reader.
- Controlling Idea/Purpose of the letter
- WH Questions - What, when, where, who, whom, which, whose, why, how
- Verb: thank, appreciate, hope, wish

DOECE Bengaluru

Diploma in Electronics & Communications Engineering

Page 116
Email writing samples and practice content in the activity section.

Additional essential writing skills – Framework will be provided and assignments will be advised:

- Resume writing /Curriculum Vitae
- Report Writing
- Portfolio writing
- Formal letters

UNIT5: English - Reading Skills, Grammar & Vocabulary

Lesson Outcome:
At the end of the session, student should be able to:

- Read sentences with punctuation.
- Understand the techniques of reading complex words.
- Understand and apply the reading techniques for efficient reading.
- Understand the usage of communication tools like Thesaurus and Dictionary that aids in improving vocabulary and reading.
- Understand and apply the functional grammar aspects in day today communication.

<table>
<thead>
<tr>
<th>Comprehension activities</th>
<th>Passage comprehension</th>
<th>Conversation comprehension</th>
<th>0:2: 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Techniques for smart reading</td>
<td>Strategies for smart reading:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Skimming and scanning through the text, inferring the meaning</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Questioning, summarizing</td>
<td></td>
<td></td>
</tr>
<tr>
<td>List of Commonly confused words and how to use/avoid them</td>
<td>Set of words to accelerate the English language learning and usage. Strategies to use these words effectively</td>
<td></td>
<td>0:1: 2</td>
</tr>
<tr>
<td>Sentences:</td>
<td>Techniques of categorizing sentences, understanding how to build with punctuation and effectively use in the verbal and non-verbal communication.</td>
<td></td>
<td>0:1: 2</td>
</tr>
<tr>
<td>Reading skills</td>
<td>Functional Grammar</td>
<td>Vocabulary</td>
<td></td>
</tr>
<tr>
<td>----------------</td>
<td>--------------------</td>
<td>------------</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Interrogative sentence</td>
<td>Punctuation, Content organization and Comprehension</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Exclamatory sentence</td>
<td>Techniques:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Learning new words from comprehension by way of repetition and usage of these words in communication</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Listing technical jargons and repeatedly using in the communication with peers and teachers</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Chunking and reading words</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tools:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Understand the difference between a Dictionary and a Thesaurus</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Understand "When" and "How" to use these tools for communication</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>This involves more of hands on activities.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Comprehension remains as a main activity to accelerate the learning of spoken and written English language</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Increases vocabulary, builds confidence and helps in becoming a good communicator.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Activities are done, tips are provided to efficiently implement these strategies.</td>
<td></td>
</tr>
</tbody>
</table>

Unit 6 - Communication Tools

Lesson Outcome:

At the end of the session, student should be able to:

- Use Email technology efficiently for communication
- Present content in the PPT format efficiently
- Understand different platforms available for web conferencing and efficiently work with them.
- Create reports and data management.
Introduction

Evolution of communication tools
- Traditional vs. modern communication tools
- Advantages and Disadvantages

One-to-One

Email using Gmail
- How to use the tools effectively?
- Formatting, layout
- Including attachment
- Working with “To, CC, BCC” and Subject fields effectively
- Using signature

One-to-Many

Presentation using PowerPoint
- Creating, Editing, Saving slides
- Using Animation
- Formatting options

Webinar / Web Presentation (zoom, Google meet, Skype)
- Hosting online meeting using online meeting tools
- Inviting people
- Sharing screen

Other

Reports using MS Word
- Open, close, Edit and Save usage with documents
- Layout and strategies for creating report
- Sample report creation demo with follow on assignment
- Core subject project report submission assignment

Data & Graphs using MS Excel
- Open, close, save and edit the excel document
- Creating data
- Using basic maths operation in Excel for working with data
- Creating simple graphs
- Assignment: For example, creating statistics of subject wise activities completed for 6 months in the credit course

Course Class Activity List (Unit-wise)

The following are the various activities that faculty could conduct for each unit are presented below:

<table>
<thead>
<tr>
<th>Unit No.</th>
<th>Unit Title</th>
<th>Unit Activities</th>
</tr>
</thead>
<tbody>
<tr>
<td>UNIT 1:</td>
<td>English – Introduction</td>
<td>1. 42 sounds revision:</td>
</tr>
</tbody>
</table>
1. s, a, t, i, p, n
2. c, k, e, h, r, m, d
3. g, o, u, l, f, b
4. ai, j, oa, ie, ee, or
5. z, w, ng, v, oo, oo
6. y, x, ch, sh, th, th
7. qu, ou, oi, ue, er, ar

- This helps in reducing the native language impact
- Helps in understanding short and long vowel words
- Helps in spelling
- Helps in pronunciation

2. Reading commonly used words loud from the list (list will be provided in the workbook):
 - This helps in getting familiarity with the word pronunciation and helps in reading.

3. Blending words activity:
 - Write simple three-letter words (CVC/CVCC/CVCV) pattern words: Can, Cap, Snap, cape (list will be provided in the workbook)
 - Show how to blend with the sound.
 - Starting with 3 letter words and continuing to 6 to 8 letter words. *Note: Remember before going through big words, it is always important to assess and ensure the student is aware of all the 42 sounds and are comfortable making small words.*

Parts of Speech:

Building sentence using parts of speech: Demonstration by teacher: (Will be explained in the book as an example)

Jumbled parts of speech: Student should pick the right order to build meaningful sentence:

(More samples will be provided in the workbook)

- College go to you everyday.
- Makes spider web the a

Gender, Singular and Plurals:
- Match the following activity for singular and plural
- Fill in the blanks activity for genders
<table>
<thead>
<tr>
<th>Unit 2</th>
<th>Communication</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Reading & Comprehension: Conversation</td>
</tr>
<tr>
<td></td>
<td>• Conversation at the bank (provided in the workbook along with few more conversation samples)</td>
</tr>
<tr>
<td></td>
<td>• Questions based on this conversation will be provided in the workbook</td>
</tr>
</tbody>
</table>

	Oral:
	• Introduce yourself?
	Visual:
	• Video clip on communication etiquette
	• Pictures (in addendum section): do's and don’ts of communication

Group of students, one participant whispers in another participant’s ear, and this message has to be passed on in a circle until it reaches back the sender. Making a note of process of message conveyed and how it was perceived.

- Identify the communication gap if any.
- Discuss and conclude the communication framework importance
- Discuss/reiterate how to make communication framework strong.

1. Role play to assess the understanding of building blocks of communication: (can be tapered to the core skills of diploma courses, following are just few of the examples)
 a. Announcing the result of students in the class or
 b. Announcing the job placement of students (people, context, message, form of message)
 c. Discussing the guidelines of examination (listening skills)
 d. Listening to the weather forecast without seeing and making note of the listening ability (play video of weather forecast) – Assess based on how much the student is able to recall.
<table>
<thead>
<tr>
<th>Unit 3</th>
<th>Verbal communication</th>
</tr>
</thead>
</table>

2. Run National geography/Discovery Video clip/subject related technical video clip on YouTube:
 Check:
 - if the student has not understood what a speaker expressed
 - about work or safety related issues
 - seeking clarification or advice appropriately from colleague, customer, management or vendor

1. Voice/tone modulation: Showcase video Discussion:
 - What was right?
 - What was wrong?
 - How it should have been better?

2. Picture description activity (memory test): Class split into groups A, B, C, D: (two or four groups of at least 5 people each): Teacher shows different picture to each group for three minutes. Now each group has to remember what was on the picture and discuss with each other, write down the elements on a piece of sheet and share it with the teacher. Group that remembers more will be the winner.

 Teacher to observe the body language of a student in the group, listening skills of a student, presentation skill, comprehension skill, content delivery skill, confidence level, team work. And reiterate the concepts, dos and don’ts, and discuss what could have been done better.
 (details of pictures will be given in the workbook)

3. Telephonic conversation:
 Role play by a teacher: Call Airtel/Vodafone department and asking for the phone number portability process.

 After teacher demonstrates, teacher divides the class in to small groups of three people.
 - Each group will be given a different telephone conversation assignment (samples will be provided in workbook).
<table>
<thead>
<tr>
<th>Unit 4: Non-verbal communication</th>
<th>Body language</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Simon Says:</td>
</tr>
<tr>
<td></td>
<td>Instructions and set up:</td>
</tr>
<tr>
<td></td>
<td>1. Series of instructions to the group that are to be copied/reproduced. Start slowly and increase the pace</td>
</tr>
<tr>
<td></td>
<td>2. State the following actions as YOU do them:</td>
</tr>
<tr>
<td></td>
<td>- Put your hand to your nose</td>
</tr>
<tr>
<td></td>
<td>- Clap your hands</td>
</tr>
<tr>
<td></td>
<td>- Stand up</td>
</tr>
<tr>
<td></td>
<td>- Turn around</td>
</tr>
<tr>
<td></td>
<td>- Touch your shoulder</td>
</tr>
<tr>
<td></td>
<td>- Sit down</td>
</tr>
<tr>
<td></td>
<td>- Stamp your foot</td>
</tr>
<tr>
<td></td>
<td>- Cross your arms</td>
</tr>
<tr>
<td></td>
<td>- Put your hand to your forehead – BUT WHILE SAYING THIS PUT YOUR HAND TO YOUR NOSE</td>
</tr>
<tr>
<td></td>
<td>3. Observe the number of group members who copy what you did rather than what you said.</td>
</tr>
<tr>
<td></td>
<td>Outcome of this activity:</td>
</tr>
<tr>
<td></td>
<td>Discuss how body language can reinforce/influence verbal communication and drive the importance of body language and how to work on it</td>
</tr>
<tr>
<td></td>
<td>- Email communication & Using technical jargons:</td>
</tr>
<tr>
<td></td>
<td>Sample letter writing as assignment to students. (list will be provided in the text book – Request, apology, job application and relevant email formats that are useful for students post diploma course)</td>
</tr>
<tr>
<td></td>
<td>- There will be at least one assignment that utilizes technical jargons in email communication.</td>
</tr>
</tbody>
</table>
UNIT 5: English - Reading Skills, Grammar & Vocabulary

- Reading passage (Provided in workbook)
- Reading passage from the text book
- Comprehension: Passage & Conversation (will be provided in workbook)
- Chunking words and reading activities

UNIT 6: Communication tools

- Email writing activities: Writing emails using email provider. Theme based email writing
- Report writing assignment

Writing about a machinery tool/interior designing plan? Related to the diploma stream.

- Resume writing assignment
- Data handling: Collecting data about machines/number of students passed out of college for last three years and creating graph about it.
- Presentation:
 - About learning in the communication class
 - Concept presentation

Course Assessment Strategies

Assessment Methodology
a. Observation (role play activities, team activities, demonstration)
b. Questions & Answer – Periodic Assessment

Assessment Grading RUBRICS

<table>
<thead>
<tr>
<th>Language Basics</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Beginner</td>
<td>Doesn't know / understand</td>
</tr>
<tr>
<td>Intermediate</td>
<td>can read and identify commonly used words</td>
</tr>
<tr>
<td>Good</td>
<td>Confident, able to communicate well with known people</td>
</tr>
<tr>
<td>Advanced</td>
<td>Confident, able to communicate well with anyone using a English</td>
</tr>
<tr>
<td>Expert</td>
<td>Can read, understand; Also comprehend & can train others</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Reading</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Beginner</td>
<td>Beginning to read, has native language impact</td>
</tr>
<tr>
<td>Intermediate</td>
<td>can read, identify words, build simple 3/4/5 letter words easily</td>
</tr>
<tr>
<td>Good</td>
<td>Can read, understand, build words, read simple sentences ; Also comprehend</td>
</tr>
<tr>
<td>Advanced</td>
<td>Can read, understand, build words, read simple sentences ; Also comprehend</td>
</tr>
<tr>
<td>Expert</td>
<td>Confident, read simple and complex sentences with punctuation, comprehend, spell also build words</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Inter personal communication</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Beginner</td>
<td>is shy, doesn't talk/express</td>
</tr>
<tr>
<td>Level</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>--</td>
</tr>
<tr>
<td>Intermediate</td>
<td>hesitates to communicate – due to lack of confidence / ability, can talk to known people</td>
</tr>
<tr>
<td>Good</td>
<td>can talk to unknown people, less confident, does not express, has hard time working as a team</td>
</tr>
<tr>
<td>Advanced</td>
<td>can talk to unknown people, confident, can’t express, has hard time working as a team</td>
</tr>
<tr>
<td>Expert</td>
<td>confident, can talk to anyone, express well, works well in the team</td>
</tr>
</tbody>
</table>

Body language

<table>
<thead>
<tr>
<th>Level</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beginner</td>
<td>Is shy, not open to communicate, has hard time making friends</td>
</tr>
<tr>
<td>Intermediate</td>
<td>Knows basics of Body language, practices sometimes</td>
</tr>
<tr>
<td>Good</td>
<td>Knows basics of Body language, practices most times, has less confidence in presenting content</td>
</tr>
<tr>
<td>Advanced</td>
<td>Knows and practices good body language all times, can present content</td>
</tr>
<tr>
<td>Expert</td>
<td>Knows and practices good body language all times, is an example, Leads the pack to get better</td>
</tr>
</tbody>
</table>

Listening Skills

<table>
<thead>
<tr>
<th>Level</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beginner</td>
<td>Just hears, no attention</td>
</tr>
<tr>
<td>Intermediate</td>
<td>Listens, pays attention, does not ask any question</td>
</tr>
<tr>
<td>Good</td>
<td>Listens, pays attention, ask questions</td>
</tr>
<tr>
<td>Advanced</td>
<td>listens, pays attention, asks questions, cannot empathize</td>
</tr>
<tr>
<td>Expert</td>
<td>Listens, pays attention, asks clarifying questions, able to understand the message communicated</td>
</tr>
</tbody>
</table>

Acceptability to Learn

<table>
<thead>
<tr>
<th>Level</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low</td>
<td>is not receiving to information</td>
</tr>
<tr>
<td>Average</td>
<td>receives information but resists to implement</td>
</tr>
<tr>
<td>Good, Above Average</td>
<td>receives information and implements per instructions</td>
</tr>
<tr>
<td>Strong</td>
<td>receives information and proactively implements and seeks feedback</td>
</tr>
</tbody>
</table>

Verbal Communication

<table>
<thead>
<tr>
<th>Level</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beginner</td>
<td>Does not communicate, shy, low on confidence; has problem expressing in his/her native language or English language</td>
</tr>
<tr>
<td>Intermediate</td>
<td>Can communicate in native language, low confidence, shy, yet to try in English language</td>
</tr>
<tr>
<td>Good</td>
<td>Can communicate in native language, good confidence, tries to communicate in English language</td>
</tr>
<tr>
<td>Advanced</td>
<td>Can communicate in native language, express view points, good confidence, comfortable talking to people in the team, tries to communicate in English language aswell</td>
</tr>
<tr>
<td>Expert</td>
<td>Can communicate in native language, express view points, very good confidence, can communicate with anyone without any fear, asks clarifying questions, communicates well in English, or tries hard to communicate in English language as well</td>
</tr>
</tbody>
</table>

Non-Verbal Communication

<table>
<thead>
<tr>
<th>Level</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beginner</td>
<td>Struggles to understand the non-verbal cues, has to work on body language, has hard time understanding the written communication aspects</td>
</tr>
<tr>
<td>Intermediate</td>
<td></td>
</tr>
<tr>
<td>Good</td>
<td></td>
</tr>
<tr>
<td>Advanced</td>
<td></td>
</tr>
<tr>
<td>Expert</td>
<td></td>
</tr>
<tr>
<td>Level</td>
<td>Description</td>
</tr>
<tr>
<td>----------</td>
<td>---</td>
</tr>
<tr>
<td>Intermediate</td>
<td>Can understand the non-verbal cues, has to practice, tries to apply written communication aspects</td>
</tr>
<tr>
<td>Good</td>
<td>Can understand non-verbal cues, practices well, works hard to get hold on written communication skills, exhibits confidence in whatever task is given</td>
</tr>
<tr>
<td>Advanced</td>
<td>Can understand non-verbal cues, can work on written communication aspects, exhibits confidence, practices well, help others to identify non-verbal cues</td>
</tr>
<tr>
<td>Expert</td>
<td>Can understand non-verbal cues, train others, confident, exhibits good non-verbal cues at all times, can train the pack, has good hold on written communication as well.</td>
</tr>
</tbody>
</table>

Comprehension

<table>
<thead>
<tr>
<th>Level</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beginner</td>
<td>Tries to read the passage, has hard time to comprehend</td>
</tr>
<tr>
<td>Intermediate</td>
<td>Can read the conversation passage, has hard time understanding the regular passage</td>
</tr>
<tr>
<td>Good</td>
<td>Can read the conversation passage, regular passage, but stutters in answering questions if there are technical jargons</td>
</tr>
<tr>
<td>Advanced</td>
<td>Can read the conversation passage, comprehend but regular passage comprehension is good</td>
</tr>
<tr>
<td>Expert</td>
<td>Can read the conversation passage, comprehend but regular passage comprehension is good, explain better to others, help others, lead the pack</td>
</tr>
</tbody>
</table>

Writing Communication

<table>
<thead>
<tr>
<th>Level</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beginner</td>
<td>Has trouble forming right sentences for written communication</td>
</tr>
<tr>
<td>Intermediate</td>
<td>Can form sentences, has problem with the layout, gets confused between layout for different form of written communication</td>
</tr>
<tr>
<td>Good</td>
<td>Can form sentences, has fair understanding of the layout to be used for particular type of written communication, but stutters for words and expression</td>
</tr>
<tr>
<td>Advanced</td>
<td>Can form sentences, has good understanding of the layout to be used for particular type of written communication, confident, can express thoughts well</td>
</tr>
<tr>
<td>Expert</td>
<td>Can form sentences, has good understanding of the layout to be used for particular type of written communication, confident, can express thoughts well and train others and lead the pack</td>
</tr>
</tbody>
</table>
Recommended Learning Resources

https://www.englishclub.com/grammar/parts-of-speech.htm
Watch Amy Cuddy's TED Talk: Your Body Language Shapes Who You Are
Additional Reading: http://money.cnn.com/2000/05/03/career/q_body_language/

Pre-assessment:

Activity 1:
Make a group, read random words from the list, build sentence for few words from the list.

Create a group of 3 or 5 students. Randomly pick 5 words from the word list write down on the board/show them as a chart if you have created a word chart/make chit of words and ask them to pick one chit and READ the word.

Main idea: Testing the pronunciation ability, language ability, confidence in speaking, ability to understand and accept the instruction

Activity 2:
Simple reading test – Reading passages (Simple passage from the current course book)
Show the reading passage, let each one of them read 2 lines, after first student is done with reading two lines, then the next student must pick up from there and read next two lines. This process has to be followed until the entire class is done with reading or at least ten students are done with reading.
Main idea: Testing listening skills, attentiveness, language ability, pronunciation ability

Activity 3:
Students getting to know each other. Create a group of 3 or 5 students. Each student gets chance to talk to another student, introduce him/herself to the student, ask question, make a note of the answer against the name of the student who is answering the question on a sheet of paper.

Main idea: To assess current communication level, body language when students talk with each other, and confidence.

Commonly Used Word List

<table>
<thead>
<tr>
<th>When</th>
<th>Today</th>
<th>For</th>
<th>Off</th>
<th>Yes</th>
<th>To</th>
<th>Girl</th>
<th>This</th>
</tr>
</thead>
<tbody>
<tr>
<td>Give</td>
<td>Stop</td>
<td>There</td>
<td>Often</td>
<td>Been</td>
<td>Where</td>
<td>You</td>
<td>Now</td>
</tr>
<tr>
<td>Again</td>
<td>Little</td>
<td>Than</td>
<td>Myself</td>
<td>Of</td>
<td>Way</td>
<td>Be</td>
<td>Fun</td>
</tr>
<tr>
<td>Do</td>
<td>Large</td>
<td>At</td>
<td>Over</td>
<td>He</td>
<td>Which</td>
<td>Were</td>
<td>Only</td>
</tr>
<tr>
<td>From</td>
<td>Both</td>
<td>Like</td>
<td>Along</td>
<td>It</td>
<td>Write</td>
<td>Or</td>
<td>Much</td>
</tr>
<tr>
<td>Him</td>
<td>Name</td>
<td>Said</td>
<td>Why</td>
<td>More</td>
<td>Goes</td>
<td>One</td>
<td>Tell</td>
</tr>
<tr>
<td>Can</td>
<td>Few</td>
<td>They</td>
<td>Has</td>
<td>My</td>
<td>Great</td>
<td>All</td>
<td>Out</td>
</tr>
<tr>
<td>Go</td>
<td>Home</td>
<td>Look</td>
<td>Bring</td>
<td>Any</td>
<td>Number</td>
<td>That</td>
<td>Fast</td>
</tr>
<tr>
<td>But</td>
<td>Big</td>
<td>Know</td>
<td>Part</td>
<td>Their</td>
<td>First</td>
<td>Cat</td>
<td>Is</td>
</tr>
<tr>
<td>Old</td>
<td>Should</td>
<td>Done</td>
<td>By</td>
<td>We</td>
<td>Find</td>
<td>His</td>
<td>Small</td>
</tr>
<tr>
<td>Not</td>
<td>Once</td>
<td>High</td>
<td>As</td>
<td>She</td>
<td>Me</td>
<td>Have</td>
<td>Dog</td>
</tr>
<tr>
<td>Her</td>
<td>Thought</td>
<td>So</td>
<td>Into</td>
<td>Did</td>
<td>In</td>
<td>How</td>
<td>See</td>
</tr>
<tr>
<td>Time</td>
<td>Better</td>
<td>Them</td>
<td>Away</td>
<td>Went</td>
<td>Before</td>
<td>Water</td>
<td>Here</td>
</tr>
<tr>
<td>Long</td>
<td>Many</td>
<td>Does</td>
<td>No</td>
<td>Full</td>
<td>Saw</td>
<td>And</td>
<td>People</td>
</tr>
<tr>
<td>Had</td>
<td>Get</td>
<td>Always</td>
<td>Other</td>
<td>Some</td>
<td>Never</td>
<td>Use</td>
<td>School</td>
</tr>
<tr>
<td>Word</td>
<td>Please</td>
<td>These</td>
<td>With</td>
<td>Then</td>
<td>Boy</td>
<td>Take</td>
<td>Two</td>
</tr>
<tr>
<td>Very</td>
<td>Ask</td>
<td>Last</td>
<td>An</td>
<td>If</td>
<td>Right</td>
<td>The</td>
<td>Call</td>
</tr>
<tr>
<td>Your</td>
<td>Say</td>
<td>Got</td>
<td>What</td>
<td>Night</td>
<td>After</td>
<td>Will</td>
<td>Might</td>
</tr>
<tr>
<td>Make</td>
<td>Ten</td>
<td>Next</td>
<td>Come</td>
<td>Made</td>
<td>About</td>
<td>Was</td>
<td>May</td>
</tr>
<tr>
<td>Day</td>
<td>I</td>
<td>Those</td>
<td>Would</td>
<td>Up</td>
<td>Far</td>
<td>Are</td>
<td>Walk</td>
</tr>
<tr>
<td>Each</td>
<td>Show</td>
<td>Play</td>
<td>Who</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

To assess current communication skill: Activity based

Activity 3:
Making a group of students and getting to know each other with a predefined expectation for example:

Name:
I have performed on stage:
I'm good at sports:
I can speak more than 3 languages:
I'm always cheerful:
I like my mother tongue:
Course Assessment and Evaluation

Continuous Internal Evaluation (CIE)

<table>
<thead>
<tr>
<th>Sl. No</th>
<th>Assessment</th>
<th>Schedule</th>
<th>Duration</th>
<th>Max. Test marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Skill Test 1</td>
<td>At the end of 3<sup>rd</sup> week of the sem</td>
<td>2 Hrs</td>
<td>20</td>
</tr>
<tr>
<td>2</td>
<td>Skill Test 2</td>
<td>At the end of 7<sup>th</sup> week of the sem</td>
<td>2 Hrs</td>
<td>20</td>
</tr>
<tr>
<td>3</td>
<td>Skill Test 3</td>
<td>At the end of 13<sup>th</sup> week of the sem</td>
<td>2 Hrs</td>
<td>20</td>
</tr>
</tbody>
</table>

Total: 60

Scheme of Valuation for CIE

<table>
<thead>
<tr>
<th>Serial no</th>
<th>Assessment</th>
<th>Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Portfolio Evaluation of activities / exercises conducted upto the schedule of Skill Test. (Work Book Based)</td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td>Assessment of any one through qualitative assessment (Rubrics)</td>
<td>10</td>
</tr>
</tbody>
</table>

TOTAL: 20

RUBRICS FOR ASSESSMENT OF ACTIVITY (10marks) (Qualitative Assessment)

<table>
<thead>
<tr>
<th>Dimension</th>
<th>Beginner</th>
<th>Intermediate</th>
<th>Good</th>
<th>Advanced</th>
<th>Expert</th>
<th>Student Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Descriptor</td>
<td>Descriptor</td>
<td>Descriptor</td>
<td>Descriptor</td>
<td>Descriptor</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Descriptor</td>
<td>Descriptor</td>
<td>Descriptor</td>
<td>Descriptor</td>
<td>Descriptor</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Descriptor</td>
<td>Descriptor</td>
<td>Descriptor</td>
<td>Descriptor</td>
<td>Descriptor</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Descriptor</td>
<td>Descriptor</td>
<td>Descriptor</td>
<td>Descriptor</td>
<td>Descriptor</td>
<td></td>
</tr>
</tbody>
</table>

Average / Total Marks:
<table>
<thead>
<tr>
<th>Dimension</th>
<th>Beginner</th>
<th>Intermediate</th>
<th>Good</th>
<th>Advanced</th>
<th>Expert</th>
<th>Student Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Language Basics</td>
<td>Doesn’t know / understand</td>
<td>Can read and identify commonly used words</td>
<td>Confident, able to communicate well with known people</td>
<td>Confident, able to communicate well with anyone using a English</td>
<td>Can read, understand; Also comprehend & can train others</td>
<td>8</td>
</tr>
<tr>
<td>Reading</td>
<td>Beginning to read, has native language impact</td>
<td>Can read, identify words, build simple 3/4/5 letter words easily</td>
<td>Can read, understand, build words, read simple sentences; Also comprehend</td>
<td>Can read, understand, build words, read simple sentences; Also comprehend</td>
<td>Confident, read simple and complex sentences with punctuation, comprehend, spell also build words</td>
<td>6</td>
</tr>
<tr>
<td>Inter personal communication</td>
<td>Is shy, doesn’t talk/express</td>
<td>Hesitates to communicate – due to lack of confidence / ability, can talk to known people</td>
<td>Can talk to unknown people, less confident, does not express, has hard time working as a team</td>
<td>Can talk to unknown people, confident, can’t express, has hard time working as a team</td>
<td>Confident, can talk to anyone, express well, works well in the team</td>
<td>8</td>
</tr>
<tr>
<td>Body language</td>
<td>Is shy, not open to communicate, has hard time making friends</td>
<td>Knows basics of Body language, practices sometimes</td>
<td>Knows basics of Body language, practices most times, has less confidence in presenting content</td>
<td>Knows and practices good body language all times, can present content</td>
<td>Knows and practices good body language all times, is an example, Leads the pack to get better</td>
<td>8</td>
</tr>
</tbody>
</table>

Average / Total Marks: \(\frac{8+6+8+8}{4} \) \(7.5 = 8 \) marks
Scheme of Valuation for Semester End Examination (SEE)

<table>
<thead>
<tr>
<th>Serial no</th>
<th>Assessment</th>
<th>Evidence</th>
<th>Marks</th>
<th>Conversion</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Portfolio Evaluation- UNIT 1: English - Introduction</td>
<td>Work Book</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Portfolio Evaluation- UNIT 2: Communication</td>
<td>Work Book</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Portfolio Evaluation- UNIT 3: Verbal Communication</td>
<td>Work Book</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Portfolio Evaluation- UNIT-4: Non-Verbal Communication:</td>
<td>Work Book</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Portfolio Evaluation- UNIT-5: English - Reading Skills, Grammar & Vocabulary</td>
<td>Work Book</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Any one activity through communication tools- By qualitative assessment (Rubrics).</td>
<td>BTE Answer scripts</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TOTAL</td>
<td></td>
<td>100</td>
<td></td>
</tr>
</tbody>
</table>
1. RATIONALE

Information Technology is crucial to the majority of the business and has a great influence on innovation and engineering. Every branch of engineering and every organization opt for computers and IT skills for business automation, communication/connectivity, resource planning, work automation and securing information etc. All engineering diploma students must be conversant with the basic IT skills which empower them to learn new technologies, adapt to changes, business development, communication etc.

2. COURSE SKILL SET

The aim of the course is to help the student to attain the following industry identified competency through various teaching –learning experiences.

Perform jobs related to web design and maintenance, business process automation tool management, cyber security and safety and program assistant.

3. COURSE OBJECTIVES

1. Demonstrate the basics of coding.
2. Design and develop web pages that include static and dynamic content.
3. Describe the basic concepts of Cloud and IoT.
4. Express the workflow and business automation
5. Recognize the best practices of Cyber Safety and security.
4. JOB ROLE

<table>
<thead>
<tr>
<th>SL.NO</th>
<th>LEVEL</th>
<th>JOB ROLES</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>Junior software developer - web.</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>Junior Creative Designer/Digital Artist</td>
</tr>
</tbody>
</table>

5. PREREQUISITES

<table>
<thead>
<tr>
<th>STUDENT</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Basic Computer skills</td>
<td>(Students without basic computer skills should be taught basic skills)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TEACHER</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Computer science faculty with required knowledge of IT Skills.</td>
<td></td>
</tr>
</tbody>
</table>

6. COURSE OUT COMES

On successful completion of the course, the students will be able to demonstrate industry oriented Cos associated with the above mentioned competency:

<table>
<thead>
<tr>
<th>COURSE OUTCOME</th>
<th>UNIT LINKED</th>
<th>CL</th>
<th>LINKED PO</th>
<th>TEACHING HOURS</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1 Illustrate the basics of coding and develop simple applications for android phones.</td>
<td>1</td>
<td>U, A</td>
<td>1, 4, 7</td>
<td>15</td>
</tr>
<tr>
<td>CO2 Design and Develop websites.</td>
<td>2</td>
<td>U, A</td>
<td>1, 4, 7</td>
<td>30</td>
</tr>
<tr>
<td>CO3 Identify Cloud Services IoT applications</td>
<td>3</td>
<td>U</td>
<td>1, 4, 7</td>
<td>12</td>
</tr>
<tr>
<td>CO4 Apply workflow and use ERP for a simple project plan</td>
<td>4</td>
<td>U</td>
<td>1, 4, 7</td>
<td>09</td>
</tr>
<tr>
<td>CO5 Implement best practices of cyber safety and security in the workplace.</td>
<td>5</td>
<td>U, A</td>
<td>1, 4, 7</td>
<td>12</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td></td>
<td></td>
<td>78</td>
</tr>
</tbody>
</table>
8. INSTRUCTIONAL STRATEGY

These are sample strategies, which teacher can use to accelerate the attainment of the various course outcomes

1. Lecturer method (L) does not mean only traditional lecture method, but different type of teaching method and media visual/graphical content that are employed to develop the outcomes
2. Massive Open on-line courses (MOOCS) can be used to teach various topics/sub topics.
3. Online coding platform wherever mentioned.
4. Hands on coding should be practiced.
5. About 15 to 20% of the topics/sub topics which are relatively simpler or descriptive in nature is to be given to the students for self-directed learning

9. DETAILS OF COURSE CONTENT

The following topics/sub topics is to be taught and assessed in order to develop Unit Skill sets for achieving CO to attain identified skill sets

<table>
<thead>
<tr>
<th>UNIT NO</th>
<th>Topics/Sub topics</th>
<th>Unit skill set/Learning outcomes (In cognitive domain)</th>
<th>Hours L-T-P</th>
</tr>
</thead>
</table>
| 1 | UNIT 1 - INTRODUCTION TO BASICS OF CODING | 1. Understand computer programming
2. Create and write Algorithm for programmable problems.
3. Design Flowchart for programmable problems.
4. Develop simple Android application. | 05-0-10 |
| 1.1 | Introduction to computer programming | | |
| 1.2 | Algorithms – With sufficient examples | | |
| 1.3 | Flowcharts – With sufficient examples | | |
| 1.4 | Execute simple programs | | |
| Note: Below listed or any other suitable online/offline coding platforms should be used to demonstrate and provide coding experience to students. | | |
| a. https://scratch.mit.edu/ | | |
| b. https://studio.code.org/projects | | |
| Suggested programs are listed in Table 1 | | |
1.5 Introduction to Application development

1.6 Simple android application development (No knowledge of programming language is required).

Note:

1. **The purpose of application development is to ignite and promote programming skills.**
2. **Application development should be done using any App builder platforms such as**
3. **MITApp Inventor:**

 https://appinventor.mit.edu/
4. **Thunkable:**

 https://thunkable.com/
5. **ibuildapp:**

 https://ibuildapp.com/
6. **The student should be introduced to the android application development environment for further research and learning**

 https://developer.android.com/

1.7 Activity: create a simple Android application (Unique for each student) publish on the learning management system.

UNIT 2 - DESIGN AND DEVELOP WEB PAGES

<table>
<thead>
<tr>
<th>2</th>
<th>2.1 Basic web technologies</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>- Browser</td>
</tr>
<tr>
<td></td>
<td>- Web –Server</td>
</tr>
<tr>
<td></td>
<td>- Client-Server Model</td>
</tr>
<tr>
<td></td>
<td>- URL</td>
</tr>
<tr>
<td></td>
<td>- SEO techniques</td>
</tr>
<tr>
<td></td>
<td>- Domain names and domain name system.</td>
</tr>
</tbody>
</table>

2.2 Creating Web-pages with HTML5 - Static web pages.

- Introduction, Editors
- Tags, Attributes, Elements, Headings

<table>
<thead>
<tr>
<th>2</th>
<th>1. Understand and examine basic web technologies</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2. Creating static web pages</td>
</tr>
<tr>
<td></td>
<td>3. Formatting Webpages with cascading style sheets (CSS)</td>
</tr>
<tr>
<td></td>
<td>4. Creating Dynamic web pages with JavaScript</td>
</tr>
<tr>
<td></td>
<td>5. Creating and launching dashboard based personal website.</td>
</tr>
</tbody>
</table>

10-0-20
2.3 Formatting web pages with style sheets (CSS3).
- Introduction to CSS
- Inline CSS, Internal CSS, Classes and IDs
- `div`, `Color`, `Floating`, `Positioning`
- `Margins`, `Padding`, `Borders`
- `Fonts`, `Aligning Text`, `Styling Links`

2.4 Creating a web page dynamic using JavaScript.
- Dynamic web page and Introduction to JS
- Basic syntax
- Functions
- Events

Note: Refer https://www.w3schools.com

2.6 Creating dashboards in websites.

2.6 Activity: Personal website design and launch with a free platform or Create a Blogging website.
- Online platforms (Learning and executing)
 - https://www.w3schools.com/
 - https://studio.code.org
 - https://www.khanacademy.org

Note:
1) The student must be introduced to website development platforms - worldpress.com.
2) The student must be made familiar with launching websites.

Certification available:
- HTML - W3schools
UNIT 3 - BUSINESS PROCESS AUTOMATION/ERP

3	3.1 Introduction to business process automation.	
	3.2 Organization structure and functions composition-Properties and applications	
		§ Structure
		§ Types
		§ Functional Units
	Note: Students should be made familiar with organization, types and components of a big enterprise to make him understand the working of organization keeping him as part of org.	
3.3 Workflows	3.4 Enterprise resource planning	
	§ Introduction	
	§ Components	
	§ Use and use cases	
Note: Use free and open-source platform to demonstrate and create workflows.		
Example:		
	https://airflow.apache.org/	
	https://taverna.incubator.apache.org/	
	https://trello.com/	
	https://www.processmaker.com/	
1. Identify and examine the needs of business process automation.		
2. Understand Organization structure and functions		
3. Create and use workflows		
4. Use Enterprise resource planning in workplace.		

Note: The student should be introduced into Enterprise resource planning software tools.
to understand importance of ERP.
Examples:

- https://erpnext.com/
- www.bitrix24.com
- https://www.odoo.com/

3.5 Activity:

- Project plan for summer internship - use open source ERP Software
- Identify different components of nearby organization with recourse plan and workflow design.
- Identify types of ERP software available with their market share.

UNIT 4 - INTRODUCTION TO CLOUD AND IOT CONCEPTS

4.1 Fundamentals of cloud

4.2 Cloud service models

- IaaS (Infrastructure-as-a-Service)
- PaaS (Platform-as-a-Service)
- SaaS (Software-as-a-Service)

4.3 Cloud deployment types

- Public,
- Private,
- Hybrid
- Community Cloud

4.4 Cloud services:

- Google Drive - file storage and synchronization service developed by Google;
- Google docs - bring your documents to life with smart editing and styling tools to help you easily format text and paragraphs;
- Google Co-lab (Usage of Jupyter Notebook): Colab notebooks allow you to combine executable code and rich text in a single document, along with images, HTML, LaTeX, and more.

1. Understand Cloud concepts
2. Identify and use Cloud services
3. Understand IoT concepts
4. Identify IoT applications
- **Google App Engine:** Google App Engine is a Platform as a Service and cloud computing platform for developing and hosting web applications in Google-managed data centers. Applications are sandboxed and run across multiple servers.

Note: Above cloud services are not compulsory for all branches; teacher can recommend other cloud service based on need of engineering branch.

4.5 Working of IoT and IoT components (Only brief introduction and demonstration through videos)

4.6 Explain concept of Internet of Things with examples
 - Smart home
 - Smart city
 - Smart farming

Note:
- Teacher can also select specific area of work where Things (autonomous computing devices) could be interconnected over TCP/IP to establish IoT.
- The students should be introduced to the IoT environment for further research and study.

Example:
- https://www.arduino.cc/

4.7 Activity:
Create your cloud service account and demonstrate using cloud services.
Identify cloud service provider with respect
to service models and deployment types.
Identify areas where Internet of Things could bring positive changes.

5 UNIT 5 - CYBERSECURITY AND SAFETY 4-0-8

5.1 Introduction to Cyber security and cyber safety.
- Brief awareness on cyber safety measures
- Identification of basic security issues in mobile phones and personal computers
- Installation of Antivirus software
- Firewall concepts
- Browser settings
- Importance of privacy and Password policy (Best practices).

5.2 Common threats - Demonstration
- Phishing
- DoS attack
- Man in the middle attack
- Eavesdropping
- Spamming

5.3 Activity
- Identification of basic security issues in computers of your college and fixing the same.
- Visit nearby government organization.
 - Identify basic cybersecurity issues and fixing the same
 - Demonstrate the importance of cybersecurity, password policy, and cyber safety.

1. Identify need for Cyber security and cyber safety
2. Identify basic security issues in mobile phones and personal computers
3. Examine Importance of privacy, Password policy
4. Implement best practices of cyber safety and security in work place

10. SUGGESTED PRACTICAL SKILL EXERCISES

TABLE-I

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>Practical Out Comes/Practical exercises</th>
<th>Unit No.</th>
<th>PO</th>
<th>CO</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Write an algorithm for programmable problems</td>
<td>1</td>
<td>1,4,7</td>
<td>1</td>
</tr>
<tr>
<td>Sl. No.</td>
<td>Task Description</td>
<td>Notes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>--</td>
<td>-------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Design a flowchart for programmable problems</td>
<td>1,4,7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Design and create simple game using MIT-scratch/Code.org</td>
<td>1,4,7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Design and create simple android application (MIT App Inventor)</td>
<td>1,4,7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Design and create webpage for displaying your poem (Title, header, paragraph, formatting tags)</td>
<td>2,4,7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Design and create webpage for your wish list (What you want to do). Also list challenges and opportunities along with images to present your dreams (List ordered and unordered, Image, table)</td>
<td>2,4,7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Design and create webpage using HTML and CSS about an awesome animal (Use necessary CSS tags)</td>
<td>2,4,7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Design and create web page for a travel book/recipe book with more than 3 pages, table to list places/recipes (iframe, hyperlink)</td>
<td>2,4,7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Design and create web page with JavaScript to design a simple calculator to perform the following operations: sum, product, difference and quotient</td>
<td>2,4,7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Design and create a personal webpage with dashboard</td>
<td>2,4,7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Design and create web page about advantages of business process automation with respect to your branch of engineering</td>
<td>2,3,4,7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Create a workflow for education loan approval in bank/diploma admission process (Use any tool)</td>
<td>3,4,7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Demonstrate ERP with ERPNext Demo for manufacturing, retail and service sector (Use any other ERP tools)</td>
<td>3,4,7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Create user account and demonstrate use of Google drive, Google docs, Google Co-lab (Usage of Jupyter Notebook)</td>
<td>4,4,7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Demonstrate Internet of Things using with examples</td>
<td>4,4,7</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>a. Smart home</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
b. Smart city
c. Smart farming

Note: Teacher can also select specific area of work where Things (autonomous computing devices) could be interconnected over TCP/IP to establish IoT.

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>Installation of Antivirus software</td>
<td>5</td>
<td>1,4,7</td>
</tr>
<tr>
<td>17</td>
<td>Demonstration and hands on browser settings</td>
<td>5</td>
<td>1,4,7</td>
</tr>
<tr>
<td>18</td>
<td>Demonstration and hands on privacy settings and password policy</td>
<td>5</td>
<td>1,4,7</td>
</tr>
<tr>
<td>19</td>
<td>Demonstration of common security threats (using videos)</td>
<td>5</td>
<td>1,4,7</td>
</tr>
<tr>
<td></td>
<td>a. Phishing</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>b. DoS attack</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>c. Man in the middle attack</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>d. Spammers</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>e. Virus</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The suggested practical activities (TABLE-I) in this section are demonstrated for the attainment of the competency. These practical activities can also be used for the student assessment in portfolio mode for awarding CIE marks. **The lecturer can enhance the competency level of the students by sketching more practical exercises.**

NOTES:

1. It is compulsory to prepare log book/record of exercises. It is also required to get each exercise recorded in logbook, checked and duly dated signed by the teacher.

2. Student activities are compulsory and are also required to be performed and noted in logbook.

3. Student activity is compulsory and part of skill assessment. The activity enable student to explore the course, help student to demonstrate creativity & critical thinking.

4. Student activity report is compulsory part to be submitted at the time of practical ESE.

5. Term work report is compulsory part to be submitted at the time of practical ESE.

6. Student activity and student activity reports must be uploaded to Learning management system.

7. For CIE, students are to be assessed for Skills/competencies achieved.

11. MAPPING OF CO WITH PO

<table>
<thead>
<tr>
<th>COURSE</th>
<th>CO'S</th>
<th>PROGRAMME OUTCOMES (PO'S)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>IT SKILLS</td>
<td>CO1</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>CO2</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>CO3</td>
<td>0</td>
</tr>
<tr>
<td>---</td>
<td>----</td>
<td>---</td>
</tr>
<tr>
<td>CO3</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>CO4</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>CO5</td>
<td>3</td>
<td>0</td>
</tr>
</tbody>
</table>

Level 3- Highly Mapped, Level 2-Moderately Mapped, Level 1-Low Mapped, Level 0- Not Mapped

12 SUGGESTED LEARNING RESOURCES

BOOKS

<table>
<thead>
<tr>
<th></th>
<th>Title</th>
<th>Author/Publisher</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>The Art of Programming Through Flowcharts & Algorithms</td>
<td>A. B. Chaudhuri, Firewall Media publication</td>
</tr>
<tr>
<td>2</td>
<td>HTML5 Black Book</td>
<td>by Publishing company Limited. Kogent Learning Solutions Inc.</td>
</tr>
<tr>
<td>3</td>
<td>“World Wide Web design with HTML”</td>
<td>Xavier, Tata McGraw-Hill</td>
</tr>
<tr>
<td>4</td>
<td>Internet of Things – A Hands on Approach</td>
<td>By Arshdeep Bahga and Vijay Madisetti</td>
</tr>
</tbody>
</table>

URL’S

<table>
<thead>
<tr>
<th></th>
<th>URL</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>https://scratch.mit.edu</td>
</tr>
<tr>
<td>2</td>
<td>https://studio.code.org</td>
</tr>
<tr>
<td>3</td>
<td>http://ai2.appinventor.mit.edu</td>
</tr>
<tr>
<td>4</td>
<td>https://www.w3schools.com</td>
</tr>
<tr>
<td>5</td>
<td>https://www.tutorialspoint.com/javascript/index.htm</td>
</tr>
<tr>
<td>6</td>
<td>https://www.geeksforgeeks.org/html-tutorials/</td>
</tr>
<tr>
<td>7</td>
<td>Android</td>
</tr>
<tr>
<td></td>
<td>https://developer.android.com</td>
</tr>
<tr>
<td>8</td>
<td>https://www.khanacademy.org</td>
</tr>
</tbody>
</table>

9	Tools for Web Development
	a. https://www.wix.com
	b. https://atom.io/
	c. https://www.openelement.com/
	d. https://www.layoutit.com
13. SUGGESTED LIST OF PROPOSED STUDENTS ACTIVITY

Note: Refer activities mentioned in DETAILS OF COURSE CONTENT table

14. COURSE ASSESSMENT AND EVALUATION CHART

<table>
<thead>
<tr>
<th>SL. NO</th>
<th>ASSESSMENT</th>
<th>DURATION (in minutes)</th>
<th>MAX MARKS</th>
<th>CONVERSION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>CIE Assessment 1 (Written Test -1 TH) - At the end of 3 d week</td>
<td>60</td>
<td>20</td>
<td>Average of two written tests</td>
</tr>
<tr>
<td>2</td>
<td>CIE Assessment 2 (Written Test -2 TH) - At the end of 13 week</td>
<td>60</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>CIE Assessment 3 (Skill Test) - At the end of 5 week</td>
<td>3 hrs</td>
<td>20</td>
<td>Average of three skill test</td>
</tr>
<tr>
<td>4</td>
<td>CIE Assessment 4 (Skill Test) - At the end of 7 week</td>
<td>3 hrs</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>CIE Assessment 5 (Skill Test) - At the end of 9 week</td>
<td>3 hrs</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>CIE Assessment 6 (Student activity) - At the end of 11 week</td>
<td>-</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>7</td>
<td>Total Continuous Internal Evaluation (CIE) Assessment</td>
<td>60</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Semester End Examination (SEE) Assessment (Practical Test)</td>
<td>3 hrs</td>
<td>100</td>
<td>40</td>
</tr>
</tbody>
</table>

Toal Marks 100

Note: CIE written test is conducted for 20 marks (Two sections). Each section shall have two full questions of same CL, CO. Student shall answer one full question from each section.

15. RUBRICS FOR ACTIVITY

<table>
<thead>
<tr>
<th>Dimension</th>
<th>Poor</th>
<th>Below Average</th>
<th>Average</th>
<th>Good</th>
<th>Exemplary</th>
<th>Student Score</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>4</td>
<td>8</td>
<td>12</td>
<td>16</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>Concept</td>
<td>Does not collect any information relating to the concept</td>
<td>Collects very limited information; some relate to the concept</td>
<td>Collect much information; but very limited relate to the concept</td>
<td>Collects some basic information; most refer to the concept</td>
<td>Collects a great deal of information; all refer to the concept</td>
<td>8</td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>----</td>
</tr>
<tr>
<td>Design</td>
<td>Design is not acceptable/very poorly structured</td>
<td>Design is poor and not well structured.</td>
<td>Design Followed layout samples and well structured</td>
<td>Design & convey both content and context</td>
<td>Design considered all aspect of concept, concept and presentation (UI)</td>
<td>6</td>
</tr>
<tr>
<td>Creativity</td>
<td>Very little creativity in concept or design/implementation</td>
<td>Creativity in concept or design/implementation</td>
<td>Creativity in concept/design/implmentation</td>
<td>Creativity in concept/design/implmentation which complements each other</td>
<td>Creative concept, content, presentation and implementation</td>
<td>8</td>
</tr>
<tr>
<td>Implemenation</td>
<td>Poorly implemented</td>
<td>Partially implemented</td>
<td>Implemented on time with results (content)</td>
<td>Product convey both content and context</td>
<td>Product is creative with easy-to-use UI, structure</td>
<td>8</td>
</tr>
</tbody>
</table>

Average / Total Marks: (8+6+8+8)/4 = **7.5 = 8**
16. RUBRICS for Skill Test Evaluation (Both for CIE & SEE)

<table>
<thead>
<tr>
<th>Sl No</th>
<th>Parameter to be Observed</th>
<th>Marks Allotted</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Design-Written
Skill Test 1: Algorithm / Flowchart/Visual Design
Skill Test 2: Web site visual design
Skill Test 3: Work flow or Project plan or cyber security plan or Cloud service Concept</td>
<td>30</td>
</tr>
<tr>
<td>2</td>
<td>Implementation
Skill Test 1: Android application
Skill Test 2: Web site / Web pages
Skill Test 3: Create or use cloud service account or Cyber safety and security- Antivirus Installation or browser settings</td>
<td>50</td>
</tr>
<tr>
<td>3</td>
<td>Appeal and Presentation</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>100</td>
</tr>
</tbody>
</table>

17. SYSTEM REQUIREMENTS:

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>Specification</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Computers with HD Graphics Card</td>
<td>20</td>
</tr>
<tr>
<td>2</td>
<td>Software: GIMP, KRETA, BLENDER, PHOTOSHOP or any other relevant open-source software.</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>Internet Connectivity</td>
<td>-</td>
</tr>
</tbody>
</table>

Note: Above specification is for a batch of 20 students
An electronic circuit is a structure that directs and controls electric current to perform various functions including signal amplification, computation, and data transfer. It comprises several semiconductor devices & components such as resistors, transistors, capacitors, inductors, and diodes. These Semiconductor devices supply themselves in integrating into complex and are readily manufacturable into microelectronic circuits. They also find a good scope in the future in forming key components for the majority of electrical and electronic instruments and systems in various fields such as communications, data-processing, consumer electronics & robots and also in industrial control equipment.

COURSE SKILL SET

The goal of the course is to help the student to attain the following industry-need competencies through various teaching-learning processes.

- Identifying various components and semiconductor devices used in industrial applications.
- Interpretation of datasheets and usage of instruments.
- Basic knowledge of components, devices and simple applications.
- Perform soldering job, build and test analog electronic circuits for simple applications.
- Testing and experimentation under simulated and real environments.
INSTRUCTIONAL STRATEGY

1. This is theory-practice course with 1:2 time-share. Normally, the Lecturer is expected essentially to teach the relevant theoretical parts in one hour prior to the 2-hour lab session so that at the end the class the student attains the specified class-outcome. This requires well planning from Lecturer side to adhere to the schedules.

2. The Lecturer is expected to emphasize only the essential concepts/components/circuit/topics in respect of the practicing experiment in one-hour.

3. Normally in industrial environments, experiments are conducted under simulated environments before real-environment experimentation owing to the benefits of simulation. Same procedure is adapted here too with a few exceptions.

4. Awareness and safety-precautions on use of instruments/laboratory resources is mandatory for all students prior to the experimentation.

5. Lecturers shall advise repetition of experiments wherever possible and necessary.

6. Pre-reading of the content and experiment-procedure will have a greater impact on effectiveness and taking forward of this course and hence students shall be advised to do so.

7. The intent of the activity is to integrate multiple concepts learnt in the course and to create interest in students to face the integrating-challenge; hence, the Lecturer is advised to assign only such the activities.

8. Activity project need not be designed by student, teacher may provide or guide to search; however, it has to be simulated, fabricated and tested by the students.

LEVELS OF COURSE SKILL – SETS

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>LEVEL</th>
<th>SKILL SET/S To be Attained</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Level-1</td>
<td>Identification of components and semiconductor devices.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Testing electronics components and semiconductor devices.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Adaption of the best soldering methods/practices for fabrication of circuits.</td>
</tr>
<tr>
<td>2</td>
<td>Level-2</td>
<td>Experimenting to observe characteristics/behaviour/working of semiconductor devices.</td>
</tr>
</tbody>
</table>
Building simple application development using components and semiconductor devices.

COURSE OUT COMES

On successful completion of the course, the students will be able to

<table>
<thead>
<tr>
<th>CO1</th>
<th>Identify and select the electronic components and devices and instruments.</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO2</td>
<td>Test electronic components and devices.</td>
</tr>
<tr>
<td>CO3</td>
<td>Fabricate/construct discrete circuits.</td>
</tr>
<tr>
<td>CO4</td>
<td>Select and analyse electronic circuits for characteristics and/or simple applications.</td>
</tr>
<tr>
<td>CO5</td>
<td>Experiment the circuit characteristics/simple applications under simulated and real environment.</td>
</tr>
</tbody>
</table>

Course Outcomes CO, PO, Cognitive-level and Teaching hours map

<table>
<thead>
<tr>
<th>Course Outcomes</th>
<th>CO1: Identify and select the electronic components and devices and instruments.</th>
<th>CO2: Test electronic components and devices.</th>
<th>CO3: Fabricate/construct discrete circuits.</th>
<th>CO4: Select and analyse electronic circuits for characteristics and/or simple applications.</th>
<th>CO5: Experiment the circuit characteristics/simple applications under simulated and real environment.</th>
<th>CL</th>
<th>Linked PO</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>U/A</td>
<td>U/A</td>
<td>U/A</td>
<td>U/A</td>
<td>U/A</td>
<td></td>
<td>1,2,4,5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1,4,5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1,4,5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1,3,4,5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1,3,4,5,7</td>
</tr>
</tbody>
</table>
COURSE CONTENTS

The following topics/subtopics is to be taught and assessed in order to develop Unit Skill sets for achieving CO to attain identified skill sets

<table>
<thead>
<tr>
<th>Sl. No</th>
<th>Content</th>
<th>Experiment</th>
<th>Method/Class Outcome</th>
<th>L: T:P</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Passive components (Resistor, Inductors and capacitors): Introduction, role, symbols, units, types/classification, identification, selection and applications.</td>
<td>Identification and finding/assessing values/tolerances (using color codes, labels) of passive components of different packages.</td>
<td>Demonstration, examples and exercises. Identify and ascertain roles and values of components.</td>
<td>1:0:2</td>
</tr>
<tr>
<td>2</td>
<td>Usage of electronic instruments: Multi-meter and LCR meter.</td>
<td>Verification of the values of passive components using multimeter and LCR meters (for the same components used in Expt.1)</td>
<td>Demonstration and exercises. Use meters to assess values and to test components.</td>
<td>1:0:2</td>
</tr>
<tr>
<td>3</td>
<td>Active components (Diode, Zener Diode, BJT): Introduction, list, role/function, symbols, types/packages, and applications</td>
<td>Identification of the active components, terminals, packages, and testing them for working, using multimeter.</td>
<td>Demonstration and exercises. Identify terminals, packages and test the active components.</td>
<td>1:0:2</td>
</tr>
<tr>
<td>4</td>
<td>Active components (MOSFET, SCR, DIAC, TRIAC): Role/function symbols, types and applications.</td>
<td>Identification of the active components, terminals, packages, and testing them for working, using multimeter.</td>
<td>Demonstration and experiment Identify terminals, packages and test the active components.</td>
<td>1:0:2</td>
</tr>
</tbody>
</table>

Note: Demonstrations are hand-on and can be supported by videos/animation wherever possible to see that the students understand the concepts. Real experimentation is after simulation.
<table>
<thead>
<tr>
<th></th>
<th>Topic</th>
<th>Activity</th>
<th>Resources</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Packing, Stocking, Handling of components and their electrostatic</td>
<td>Preparation of components, use of soldering iron and lead and flux. Standard Soldering practice</td>
<td>Videos, demonstration and exercises.</td>
<td>1:0:2</td>
</tr>
<tr>
<td></td>
<td>safety.</td>
<td>to connect the components on base-board/PCB/assembly board (follow soldering standard).</td>
<td>Identify specifications from component</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>data-sheets and perform standard</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Understand the data/specification sheets of all components</td>
<td></td>
<td>soldering.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Selection criterion of components. Soldering types and precautions.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Atomic structure and energy-band diagram of conductors, insulators</td>
<td>Soldering practice (continued) and de-soldering.</td>
<td>Videos, demonstration and exercises.</td>
<td>1:0:2</td>
</tr>
<tr>
<td></td>
<td>and semiconductors - comparison and examples.</td>
<td></td>
<td>Compare the features of conductors,</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>insulators and semiconductors.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Solder and de-solder the components on</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>PCBs/Baseboards.</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Simulators: Concept, advantages and features. Prominent simulation</td>
<td>Using simulator/editors: Identification, selection and use of sources, components, devices and</td>
<td>Demonstration.</td>
<td>1:0:2</td>
</tr>
<tr>
<td></td>
<td>softwares and their features.</td>
<td>instruments. Component specifications and properties, schematic preparation. Component</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>footprint/3D views.</td>
<td>Use simulator for experimentation.</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Semiconductor- Covalent bond, intrinsic and extrinsic SC: N type &</td>
<td>Usage of electronic Equipments: power supply, CRO and signal generator. Both in real and</td>
<td>Videos, demonstration and exercises.</td>
<td>1:0:2</td>
</tr>
<tr>
<td></td>
<td>P type, PN junction, biasing, current conduction, effect of</td>
<td>simulated environment.</td>
<td>Understand the current conduction in PN</td>
<td></td>
</tr>
<tr>
<td></td>
<td>temperature, and diode.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
UNIT 02: BASICS OF SEMICONDUCTOR DEVICES

| 9 | PN Junction Diode:
Formation of PN junction.
Potential barrier.
Depletion region.
Forward and Reverse biasing of diode and VI characteristics.
Diode ratings and parameters.
Plot VI characteristics of Diode and ascertain Ri and cut-in voltage using simulator.
Animation/Video/Visuals to show the working of PN junction/diode.
Experiment, graph and calculations.
Know the behavior of PN junction for biasing voltages. |
|---|---|
Plot reverse VI characteristics of Zener ascertain Zener voltage using simulator.
Animation/Video/Visuals to show the working of Zener Diode. Experiment and graph. Know the behavior of Zener diode for reverse biasing. |
| 11 | Simple problems on diode circuits/selection of different biasing voltages to illustrate FB and RB of diode.
VI characteristics of diode (expt. 9) in real environment.
Plot reverse VI characteristics of Zener diode (expt.10) in real environment.
Experiment and comparison with simulated results. Compare real and simulated results. |
| 12 | AC-to-DC conversion:
Need, rectification, half-wave and full-wave rectification. Half-wave rectifier: waveform, efficiency and ripple factor.
Experiment to obtain half-wave rectification under simulated environment: Obtain waveform, ripple factor, efficiency and PIV.
Experiment, waveforms and calculations.
Apply diode-switch to convert AC to DC. |
<p>| 13 | Bridge Rectifier: efficiency and its ripple factor. Filter components and their role in reducing ripple. | Experiment to obtain full-wave rectification (using bridge) and filtering under simulated environment: Obtain waveform, ripple factor, efficiency and PIV, without and Full wave rectifier with C-filter. | Experiment, waveform and calculations. Apply diode-switches and filter to convert AC to DC more efficiently. |
| 14 | Simple problems on half-wave, full-wave rectifier and filter circuits. | Conduct Expt. 13 under real environment. | Experiment, graph/waveforms and calculations. Compare simulated and real-experiment results. |
| 15 | Voltage regulation: Concept, need, Zener diode as voltage regulator. Voltage regulator circuit working. Condition and types of regulation. | Show how Zener diode can be used as voltage regulator in simulated and real environments. | Experiment and interpretation of result. Use of Zener diode for regulated voltage supply. |
| 16 | BJT: Types, construction, symbols, functions of base, emitter and collector, Current gain in CE mode. | Obtain output characteristics of BJT in CE configuration under simulated environment. Calculate input resistance, and mark the different regions on output characteristics and calculate current gain. | Experiment, graph and calculations Understand the behaviour of BJT. |
| 17 | BJT: Modes of operation-comparison. BJT packages and specifications. Data sheet interpretation. | Experiments 16 under real environment. | Experiment, graph and calculations. Compare with simulated results. |</p>
<table>
<thead>
<tr>
<th>UNIT 03: OPTO ELECTRONIC DEVICES</th>
</tr>
</thead>
<tbody>
<tr>
<td>18</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>19</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>20</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>21</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>23</td>
</tr>
</tbody>
</table>

UNIT 04: SENSORS AND ACTUATORS

| 24 | Sensors: Principle and classification. List passive sensors, their working principle/role, packages, specifications, and applications. Anyone passive-sensor-based simple application in detail. | Experiment any passive-sensor-based simple application to under simulated environments to illustrate use of sensor for solving simple real-world problem. | Experiment. Use electronic components and/or devices (sensor) to solve simple real-world problem. | 1:0:2 |

| 25 | Active sensors: List active sensors, their working principle/role, packages, specifications, and applications. Anyone active-sensor-based simple application in detail. | Experiment 24 under real environment | Experiment, Use electronic components and/or devices (sensors) to solve simple real-world problem. | 1:0:2 |

| 26 | Actuators: Basic principle/role and types/classification. Roles/applications of different actuators. Simple application involving actuator in detail. | Conduct a simple application involving actuator under simulated and/or real environment. | Experiment, Use electronic components and/or devices (actuator) to solve simple real-world problem. | 1:0:2 |

Mapping of COs, POs, Cognitive-levels and Teaching Hours

<table>
<thead>
<tr>
<th>CO</th>
<th>Course Outcome</th>
<th>PO</th>
<th>Manage</th>
<th>Exper</th>
<th>Co</th>
<th>Cognit</th>
<th>Le</th>
<th>Tut</th>
<th>ial</th>
<th>TOT</th>
</tr>
</thead>
</table>

Department of Collegiate & Technical Education Bengaluru-560001
<table>
<thead>
<tr>
<th>Course</th>
<th>COs</th>
<th>Program Outcomes (POs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electronic Components and Devices</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO1</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>CO2</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>CO3</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>CO4</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>CO5</td>
<td>3</td>
<td>0</td>
</tr>
</tbody>
</table>

Legends: Level 3 - Highly Mapped, Level 2 - Moderately Mapped, Level 1 - Low Mapped, Level 0 - Not Mapped

SUGGESTED LEARNING RESOURCES

Reference Books:

9. Electronic Devices and Circuits, David A. Bell, Oxford University Press, ISBN:

E-Resources

Student Activities (CIE 20 marks)

Introduction
Group of 4(maximum) students should conduct UNIQUE activity. Suggestive activities are as follow, but not limited to these only, any similar activity can be assigned. Each activity can be carried out off-class hours in the laboratory. Choose the activity for which circuits, boards and components are easily available with the guidance of the teacher, and the activity shall have the scope to integrate multiple concepts. Students are advised plan and start the activity in 7th week and complete it by 11th week.

a. Example activities

<table>
<thead>
<tr>
<th>SL. No.</th>
<th>Activities</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Fire detector application.</td>
</tr>
<tr>
<td>2.</td>
<td>Intruder detector</td>
</tr>
<tr>
<td>3.</td>
<td>LED serial-sets</td>
</tr>
<tr>
<td>4.</td>
<td>Clapp/sound detector application</td>
</tr>
<tr>
<td>5.</td>
<td>Smoke detector application</td>
</tr>
<tr>
<td>6.</td>
<td>LED bulb</td>
</tr>
<tr>
<td>7.</td>
<td>And all such simple circuits/projects that have scope to integrate multiple concepts learnt and for which circuits/boards/components are easily available.</td>
</tr>
</tbody>
</table>

10.3 Execution details

1. Maximum of 4 students in each batch.

2. Write qualitative report not exceeding 8 pages; one report per batch.

3. Each of the activity can be carried off-class, and shall be presented to the teacher using suitable presentation mode.
4. Assessment shall be made based on information collection, integration of concepts involved, execution (simulation/fabrication/testing/results), report, presentation, and role in the team.

10.4 Activity Assessment Scheme

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>Parameter to be Observed for Activity Assessment</th>
<th>Marks Allocated</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Information collection</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>Level of integration of concepts/creativity</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>Simulation, testing and result</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>Fabrication, testing and result</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>Report Presentation Role in the team</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>20</td>
</tr>
</tbody>
</table>

COURSE ASSESSMENT AND EVALUATION CHART

<table>
<thead>
<tr>
<th>Sl.No</th>
<th>Assessment</th>
<th>Duration</th>
<th>Max marks</th>
<th>Conversion</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>CIE Assessment 1 (Written Test -1-theory)</td>
<td>60 minutes</td>
<td>20</td>
<td>Average of two written tests</td>
</tr>
<tr>
<td></td>
<td>- At the end of 3rd week</td>
<td></td>
<td></td>
<td>20</td>
</tr>
<tr>
<td>2</td>
<td>CIE Assessment 2 (Written Test -2-theory)</td>
<td>60 minutes</td>
<td>20</td>
<td>Average of three skill tests</td>
</tr>
<tr>
<td></td>
<td>- At the end of 13th week</td>
<td></td>
<td></td>
<td>20</td>
</tr>
<tr>
<td>3</td>
<td>CIE Assessment 3 (Skill test)</td>
<td>3 Hours</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- At the end of 5th week</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>CIE Assessment 4 (Skill test)</td>
<td>3 Hours</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- At the end of 7th week</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>CIE Assessment 5 (Skill test)</td>
<td>3 Hours</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- At the end of 9th week</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>CIE Assessment 6 (Student activity)</td>
<td>-</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>- At the end of 11th week</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Total Continuous Internal Evaluation (CIE) Assessment</td>
<td></td>
<td></td>
<td>60</td>
</tr>
</tbody>
</table>
Scheme of Evaluation for CIE and SEE (Skill test)

(Contiuous Internal Evaluation & Semester End Examination)

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>Particulars</th>
<th>Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Understanding of the problem, identification and selection of components/devices/equipment, inputs and expected outputs.</td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td>Experimentation/Execution under simulated environment</td>
<td>20</td>
</tr>
<tr>
<td>3</td>
<td>Circuit building using soldering and board (Assessment indicators: correctness, quality, effective use of space and soldering in conformance with standards)</td>
<td>20</td>
</tr>
<tr>
<td>4</td>
<td>Experimentation and recording the observed readings in real environment</td>
<td>30</td>
</tr>
<tr>
<td>5</td>
<td>Results interpretation (Calculation/accuracy/graph/table)</td>
<td>10</td>
</tr>
<tr>
<td>6</td>
<td>Viva-voice</td>
<td>10</td>
</tr>
</tbody>
</table>

Total 100

NOTE:
- Both CIE & SEE is conducted for 100 marks (3 Hrs duration).
- Examiner is suggested to assign the question randomly and uniformly so as to avoid resource shortage in the laboratory.
- Reasonable opportunities shall be given to the student to write the circuit. Until and unless correct circuit is written he should not be allowed to rig-up/fabricate the circuit; however, student can be allowed to work under simulation environment. Then he can rig-up/fabricate the circuit for real execution.
- Normally, the experiment is simulated first, then moving on to real experimentation. However, order of simulation and real experimentation can be interchanged in the examination for the purpose of resource and time management during the examination.
RUBRICS FOR ACTIVITY

<table>
<thead>
<tr>
<th>Dimension</th>
<th>Beginning</th>
<th>Developing</th>
<th>Satisfactory</th>
<th>Good</th>
<th>Exemplary</th>
<th>Student Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Collection of data</td>
<td>Does not collect any information relating to the topic</td>
<td>Collects very limited information; some relate to the topic</td>
<td>Collects much information; but very limited relate to the topic</td>
<td>Collects some basic information; most refer to the topic</td>
<td>Collects a great deal of information; all refer to the topic</td>
<td>8</td>
</tr>
<tr>
<td>Fulfil team’s roles & duties</td>
<td>Does not perform any duties assigned to the team role</td>
<td>Performs very little duties but unreliable.</td>
<td>Performs very little duties</td>
<td>Performs nearly all duties</td>
<td>Performs all duties of assigned team roles</td>
<td>6</td>
</tr>
<tr>
<td>Shares work equally</td>
<td>Always relies on others to do the work</td>
<td>Rarely does the assigned work; often needs reminding</td>
<td>Usually does the assigned work; rarely needs reminding</td>
<td>Normally does the assigned work</td>
<td>Always does the assigned work without having to be reminded.</td>
<td>8</td>
</tr>
<tr>
<td>Listen to other Team mates</td>
<td>Is always talking; never allows anyone else to speak</td>
<td>Usually does most of the talking; rarely allows others to speak</td>
<td>Talks good; but never show interest in listening others</td>
<td>Listens, but sometimes talk too much</td>
<td>Listens and speaks a fair amount</td>
<td>8</td>
</tr>
</tbody>
</table>

Average / Total Marks: (8+6+8+8)/4 = 7.5=8
Model Question Paper FOR CIE (WRITTEN TEST)

Programme: Diploma in Electronics & Communications Engineering
Course Name: Max Marks :20
Course Code: Duration: 60minutes
Name of the course coordinator:

Test: I/II

Note: Answer one full question from each section. One full question carries 10 marks.

<table>
<thead>
<tr>
<th>Qn. No</th>
<th>Question</th>
<th>CL</th>
<th>CO</th>
<th>PO</th>
<th>Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Section-1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.a)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>c)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.a)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>c)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Section-2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.a)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>c)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.a)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>c)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Section-3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.a)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>c)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.a)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>c)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Equipment List (For a batch of 20 students)

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>NAME OF THE EQUIPMENT</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>Dual Channel 0-30V at 2/1A RPS with short-circuit protection</td>
<td>10</td>
</tr>
<tr>
<td>02</td>
<td>0-30V at 2/1A RPS with short circuit protection</td>
<td>10</td>
</tr>
<tr>
<td>03</td>
<td>Function Generator (0-10MHz)</td>
<td>10</td>
</tr>
<tr>
<td>04</td>
<td>Dual Trace Oscilloscope (20MHz)</td>
<td>10</td>
</tr>
<tr>
<td>05</td>
<td>Digital multimeters.</td>
<td>20</td>
</tr>
<tr>
<td>06</td>
<td>Decade resistance boxes</td>
<td>10</td>
</tr>
<tr>
<td>07</td>
<td>Decade capacitance boxes</td>
<td>10</td>
</tr>
<tr>
<td>08</td>
<td>Decade inductance boxes</td>
<td>10</td>
</tr>
<tr>
<td>09</td>
<td>LCR meter</td>
<td>05</td>
</tr>
<tr>
<td></td>
<td>Item Description</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>10</td>
<td>Electronic components/Consumables: resistors, inductors, capacitors, transformers, hook_up wires, SCR, MOSFET, DIAC, TRIAC, BJT, Photo transistor, Photo diode, JFET, diode, Zener diode, soldering lead etc</td>
<td>10</td>
</tr>
<tr>
<td>11</td>
<td>Bread boards, Soldering Gun, Tag Board, 9V battery cells, Bulbs.</td>
<td>10</td>
</tr>
<tr>
<td>12</td>
<td>Computer System for Circuit simulation (having Electronics Circuit Simulation Software installed in each computer)</td>
<td>20</td>
</tr>
<tr>
<td>Course Code</td>
<td>20KA21T</td>
<td>Course Title</td>
</tr>
<tr>
<td>---------------</td>
<td>---------</td>
<td>----------------------------</td>
</tr>
<tr>
<td>Semester</td>
<td>II</td>
<td>Course Group – AU/KA</td>
</tr>
<tr>
<td>No. of Credits</td>
<td>2</td>
<td>Lecture Course</td>
</tr>
<tr>
<td>Total Contact Hours</td>
<td>2 Hrs Per Week</td>
<td>26Hrs Per Semester</td>
</tr>
</tbody>
</table>

Table of Contents (ಸಾಹಿತ್ಯ)

Part – 1

Introduction to the Book, Necessity of learning a local language, Tips to learn the language with easy methods. Easy learning of a Kannada Language: A few tips. Hints for correct and polite conservation. Instructions to Teachers for Listening and Speaking Activities.

Part – II

Key to Transcription for Correct Pronunciation of Kannada Language, Instructions to Teachers to teach Kannada Language

Part – III Lessons to teach Kannada Language - Listening and Speaking Activities

Lesson – 1 Personal Pronouns, Possessive Forms, Interrogative words
Lesson – 2 Possessive forms of nouns, dubitive question and Relative nouns
Lesson – 3 Qualitative, Quantitative and Colour Adjectives, Numerals
Lesson – 4 Predictive Forms, Locative Case
Lesson – 5 Dative Cases, and Numerals
Lesson – 6 Ordinal numerals and Plural markers
Lesson – 7 Defective / Negative Verbs and Colour Adjectives
Lesson – 8 Permission, Commands, encouraging and Urging words (Imperative words and sentences)
Lesson – 9 Accusative Cases and Potential Forms used in General Communication
Lesson – 10 Helping Verbs “iru and iralla”, Corresponding Future and Negation Verbs
Lesson – 11 Do's and Don'ts in Learning of Kannada Language (Any Language in General)
Lesson – 12 Kannada Vocabulary List : Kannada Words in Conversation

Total Teaching Hours 26 Hours
Course Details

<table>
<thead>
<tr>
<th>Course Code</th>
<th>20KA21T</th>
<th>Semester</th>
<th>II</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course Title</td>
<td>ಮೊದಲೆ ಮೇಲೆಯುದ್ಧ – Ω</td>
<td>Category</td>
<td>AU</td>
</tr>
<tr>
<td>No. of Credits</td>
<td>2</td>
<td>Type of Course</td>
<td>Lecture Course</td>
</tr>
<tr>
<td>Total Contact Hours</td>
<td>2 Hrs per Week, 26 Hrs per Semester</td>
<td>Teaching Scheme</td>
<td>(L:T:P)= 2:0:0</td>
</tr>
<tr>
<td>CIE Marks</td>
<td>50</td>
<td>SEE Marks</td>
<td>Nil</td>
</tr>
</tbody>
</table>

Course Outline

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>ದಿಂದುವಿನ ಮೇಲೆಯುದ್ಧ, ಅತ್ಯಂತ ಮೇಲೆಯುದ್ಧ ವಿಶೇಷಗಳು</td>
</tr>
<tr>
<td>2.</td>
<td>ದಿಂದುವಿನ ಮೇಲೆಯುದ್ಧ ವಿಶೇಷಗಳು</td>
</tr>
<tr>
<td>3.</td>
<td>ಸಾಧನೆಯುದ್ಧ ಮತ್ತು ಮೇಲೆಯುದ್ಧ ಮಾಧ್ಯಮಗಳು</td>
</tr>
<tr>
<td>4.</td>
<td>ಮೇಲೆಯುದ್ಧ/ಮೇಲೆಯುದ್ಧಾರಿಗಳು ದಿಂದುವಿನ ಮೇಲೆಯುದ್ಧ ಮಾಧ್ಯಮಗಳು</td>
</tr>
<tr>
<td>5.</td>
<td>ಸಾಧನೆಯುದ್ಧ ಮತ್ತು ಮೇಲೆಯುದ್ಧ ವಿಶೇಷಗಳು</td>
</tr>
<tr>
<td>6.</td>
<td>ವಿಶೇಷವಾಗಿರುವ ಮೇಳಾಗಿರುವ ಮೇಲೆಯುದ್ಧ ವಿಶೇಷಗಳು</td>
</tr>
<tr>
<td>7.</td>
<td>ಮೇಲೆಯುದ್ಧ/ಮೇಲೆಯುದ್ಧಾರಿಗಳು</td>
</tr>
<tr>
<td>8.</td>
<td>ಅತ್ಯಂತ ಮೇಲೆಯುದ್ಧ ವಿಶೇಷಗಳು</td>
</tr>
<tr>
<td>9.</td>
<td>ಸಾಧನೆಯುದ್ಧ ವಿಶೇಷಗಳು</td>
</tr>
<tr>
<td>10.</td>
<td>ಸಾಧನೆಯುದ್ಧ ವಿಶೇಷಗಳು</td>
</tr>
</tbody>
</table>

Total Marks: 26

Total Hours: 26
(COURSE ASSESSMENTS AND EVALUATION CHART- CIE ONLY)

<table>
<thead>
<tr>
<th>Sl.No</th>
<th>Assessment</th>
<th>Type</th>
<th>Time frame in semester</th>
<th>Duration</th>
<th>Max marks</th>
<th>Conversion</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>CIE Assessment 1</td>
<td>Written test-1</td>
<td>- At the end of 3<sup>rd</sup> week</td>
<td>80 minutes</td>
<td>30</td>
<td>Average of three written tests-1,2,3 for 30 marks</td>
</tr>
<tr>
<td>2.</td>
<td>CIE Assessment 2</td>
<td>Written test-2</td>
<td>- At the end of 7<sup>th</sup> week</td>
<td>80 minutes</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td>CIE Assessment 3</td>
<td>Written test-3</td>
<td>- At the end of 13<sup>th</sup> week</td>
<td>80 minutes</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td>CIE Assessment 4</td>
<td>MCQ/Quiz</td>
<td>- At the end of 5<sup>th</sup> week</td>
<td>60 minutes</td>
<td>20</td>
<td>Average of three Assessment 4,5,6 for 20 marks</td>
</tr>
<tr>
<td>5.</td>
<td>CIE Assessment 5</td>
<td>Open book test</td>
<td>- At the end of 9<sup>th</sup> week</td>
<td>60 minutes</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>6.</td>
<td>CIE Assessment 6</td>
<td>Student activity & presentation</td>
<td>- At the end of 11<sup>th</sup> week</td>
<td>60 minutes</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total CIE</td>
<td></td>
<td></td>
<td></td>
<td>50</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total Marks</td>
<td></td>
<td></td>
<td></td>
<td>50</td>
<td></td>
</tr>
</tbody>
</table>
C-20 Second Year Diploma Curriculum
Electronics and Communications Engineering

Curriculum Development Cell, DTE
2021-22
III Semester Scheme of Studies - Diploma in Electronics and Communications Engineering

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>Course Category / Teaching Department</th>
<th>Course Code</th>
<th>Course Name</th>
<th>Hours per week</th>
<th>Total contact hrs/week</th>
<th>CIE Marks</th>
<th>SEE Marks</th>
<th>Total Marks</th>
<th>Min Marks for Passing (including CIE marks)</th>
<th>Assigned Grade</th>
<th>Grade Point</th>
<th>SGPA and CGPA</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>L</td>
<td>T</td>
<td>P</td>
<td>Max</td>
<td>Min</td>
<td>Max</td>
<td>Min</td>
<td>Max</td>
<td>Min</td>
</tr>
<tr>
<td>1</td>
<td>PC/EC</td>
<td>20EC31P</td>
<td>Analog Electronics</td>
<td>3</td>
<td>1</td>
<td>4</td>
<td>8</td>
<td>6</td>
<td>60</td>
<td>24</td>
<td>40</td>
<td>16</td>
</tr>
<tr>
<td>2</td>
<td>PC/EC</td>
<td>20EC32P</td>
<td>Logic Design using Verilog</td>
<td>3</td>
<td>1</td>
<td>4</td>
<td>8</td>
<td>6</td>
<td>60</td>
<td>24</td>
<td>40</td>
<td>16</td>
</tr>
<tr>
<td>3</td>
<td>PC/EC</td>
<td>20EC33P</td>
<td>Communication Systems</td>
<td>3</td>
<td>1</td>
<td>4</td>
<td>8</td>
<td>6</td>
<td>60</td>
<td>24</td>
<td>40</td>
<td>16</td>
</tr>
<tr>
<td>4</td>
<td>PC/EC</td>
<td>20EC34P</td>
<td>Electronic Measurements and Testing Techniques</td>
<td>3</td>
<td>1</td>
<td>4</td>
<td>8</td>
<td>6</td>
<td>60</td>
<td>24</td>
<td>40</td>
<td>16</td>
</tr>
<tr>
<td>5</td>
<td>AU/KA</td>
<td>20KA31T</td>
<td>Kannada-III/ಬಳ/ೆ-II/ಬಳ/ೆ-ಇಂದು-II</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>50</td>
<td>20</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Total</td>
<td>14</td>
<td>4</td>
<td>16</td>
<td>34</td>
<td>26</td>
<td>290</td>
<td>116</td>
<td>160</td>
<td>64</td>
</tr>
</tbody>
</table>

PC: Programme Core:: AU-Audit Course:: KA: Kannada:: L: Lecture:: T: Tutorial:: P: Practice
Curriculum Structure
IV Semester Scheme of Studies- Diploma in Electronics and Communications Engineering

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>Course Category / Teaching Department</th>
<th>Course Code</th>
<th>Course Name</th>
<th>Hours per week</th>
<th>Total contact hrs/week</th>
<th>CIE Marks</th>
<th>SEE Marks</th>
<th>Total Marks</th>
<th>Min Marks for Passing (including CIE marks)</th>
<th>Assigned Grade</th>
<th>Grade Point</th>
<th>SGPA and CGPA</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>L</td>
<td>T</td>
<td>P</td>
<td></td>
<td>Max</td>
<td>Min</td>
<td>Max</td>
<td>Min</td>
<td>Total</td>
</tr>
<tr>
<td>1</td>
<td>PC/EC</td>
<td>20EC41P</td>
<td>PCB Design & Fabrication</td>
<td>3</td>
<td>1</td>
<td>4</td>
<td>8</td>
<td>6</td>
<td>60</td>
<td>24</td>
<td>40</td>
<td>100</td>
</tr>
<tr>
<td>2</td>
<td>PC/EC</td>
<td>20EC42P</td>
<td>Wireless Communication</td>
<td>3</td>
<td>1</td>
<td>4</td>
<td>8</td>
<td>6</td>
<td>60</td>
<td>24</td>
<td>40</td>
<td>100</td>
</tr>
<tr>
<td>3</td>
<td>PC/EC</td>
<td>20EC43P</td>
<td>Embedded C Programming</td>
<td>3</td>
<td>1</td>
<td>4</td>
<td>8</td>
<td>6</td>
<td>60</td>
<td>24</td>
<td>40</td>
<td>100</td>
</tr>
<tr>
<td>4</td>
<td>PC/EC</td>
<td>20EC44P</td>
<td>Industrial Automation</td>
<td>3</td>
<td>1</td>
<td>4</td>
<td>8</td>
<td>6</td>
<td>60</td>
<td>24</td>
<td>40</td>
<td>100</td>
</tr>
<tr>
<td>5</td>
<td>AU/EC</td>
<td>20EC45T</td>
<td>Indian Constitution</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>50</td>
<td>20</td>
<td>-</td>
<td>50</td>
</tr>
</tbody>
</table>

Total 14 4 16 34 26 290 116 160 64 450 180

PC: Programme Core:: AU-Audit Course:: L: Lecture:: T: Tutorial:: P: Practice
3rd SEMESTER
1. **Rationale**

Analog electronics is a branch of electronics that deals with a continuously variable signal. It is widely used in radio and audio equipment along with other applications where signals are derived from analog sensors before being converted into digital signals for subsequent storage and processing. Analog Electronics offers a very elegant design with many components and would effectively act as an impetus to the digital world.

2. **Course Outcomes/Skill Sets:** On successful completion of the course, the students will be able to:

 - **CO-01** Identify the components in a given analog electronic circuit and list their characteristics and uses.
 - **CO-02** Study the given analog circuit and using the data sheets/specification sheets, list alternative electronic components for the given circuit.
 - **CO-03** Construct an analog electronic circuit for a given application and demonstrate the working of that circuit either in Real or Simulated environment.
 - **CO-04** Test a given circuit for a desired result/outcome, identify the problem and troubleshoot to obtain the desired result/outcome.

3. **Course Content**

<table>
<thead>
<tr>
<th>Week</th>
<th>CO</th>
<th>PO</th>
<th>Lecture (Knowledge Criteria)</th>
<th>Tutorial (Activity Criteria)</th>
<th>Practice (Performance Criteria)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1,3,4</td>
<td>1,3, 4, 6, 7</td>
<td>Power Supplies 1. Need, Types – Unregulated, Regulated – Linear, Switched, Battery, Selection Criteria of different power supplies 2. RPS & UPS – Online & Offline – Block Diagram and its working principle 3. SMPS – Block diagram and its working principle</td>
<td>3 hours/week</td>
<td>4 hours/week (2 hours/batch twice in a week)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Refer Table 1</td>
<td>1 hour/week</td>
<td>1. Build 5V/12V Regulated Power Supply. 2a) Identify the components in a SMPS. 2b) Identify front panel control & indicators of UPS</td>
</tr>
<tr>
<td>2</td>
<td>1,3,4</td>
<td>1,3, 4, 6, 7</td>
<td>Wave Shaping Circuits. 1. RC Integrator & RC Differentiator. 2. Clippers - Series, Shunt & Biased.</td>
<td>Refer Table 1</td>
<td>1. Generate the following waveforms from sinusoidal waveform. a. Trapezoidal waveform.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1,2,3,4</td>
<td>1,3,4,6,7</td>
<td>Special Purpose Devices. 1. Features & Applications of Tunnel Diode, Varactor Diode. 2. Features & Applications of Gunn diode & PIN diode, Solar cell. 3. Features & Applications of Schottky diode & UJT.</td>
<td>1. Identify & test all special purpose diodes and interpret their data sheets. 2. Simulate/Analyse Schottky diode/PIN diode/Gunn Diode/Varactor Diode application circuits.</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>1,2,3,4</td>
<td>2,3,4,6,7</td>
<td>Transistor Amplifiers. 1. Introduction, DC load line, Operating point, Need for biasing, Stabilization, stability factor. 2. Types of biasing-voltage divider bias for BJT. 3. Classification of Amplifiers-based on use, frequency, coupling methods & mode of operations (advantages, disadvantages)</td>
<td>1a. Demonstrate Numbering System of Semiconductor Devices. 1b. Identify Transistors in different packages and interpret their datasheets. 2a. Construct/Simulate a AND/OR Gate using transistors 2b. Design and construct voltage divider biasing circuit to fix an operating point and test the voltages</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>3,4</td>
<td>1,3,4,6</td>
<td>1. Common Emitter Transistor Amplifier-Working, Voltage gain, phase reversal. 2. RC Coupled transistor amplifier-frequency response. 3. Power amplifiers-classification, principle & performance criteria of power amplifiers.</td>
<td>1. Construct voltage divider biased single-stage RC coupled CE amplifier and plot frequency response. 2. Simulate the RC coupled amplifier using BJT. Verify the same using FET.</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>3,4</td>
<td>1,2,5,6,7</td>
<td>1. Working of Class A–Series-fed amplifier and transformer-coupled amplifier. Expression for output power and maximum power efficiency. 2. Class B- Push pull Amplifier and complementary-symmetry push-pull amplifier. Expression for output power and maximum power efficiency. 3. Working of Class AB and Class C amplifiers. Stages of practical power amplifier, Concept and expression for voltage gain of multistage amplifiers.</td>
<td>1. Demonstrate and document the working of a power amplifier using video or simulator. 2. Construct and Demonstrate/Simulate the working of push pull amplifier. Verify the same using FET.</td>
<td></td>
</tr>
<tr>
<td>Page</td>
<td>Section</td>
<td>Exercises</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>---------</td>
<td>-----------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>1. Op-amp: Block diagram, Symbol, Basic differential amplifier- Working principle. 2. Modes of operation-Single ended, Common mode & Differential mode, Ideal and practical characteristics. 3. Op-amp parameters: Input offset voltage, input offset current, power supply rejection ratio, CMRR, Input and output impedance, gain, gain-bandwidth product, slew-rate</td>
<td>Refer Table 1 1. Identify Op-amp IC, its pins and Interpret its data sheet. 2. Conduct an experiment to find the practical characteristics of Op-amp and compare them with ideal characteristics.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>1. Open-loop configuration: Comparator-inverting, non-inverting, applications, disadvantages. 2. Closed-loop configuration: virtual ground, applications - inverting, non-inverting amplifier. 3. Voltage follower, summing & difference amplifiers.</td>
<td>Refer Table 1 1. Construct and test an op-amp circuit to obtain Inverting & Non inverting output. 2. Construct a circuit to obtain the Sum/Difference of all input voltages.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>1. Construct and verify Op-amp as Differentiator, Integrator. 2. Op-amp as Schmitt trigger and precision rectifier, Gain of Multistage Op-Amp Circuits. 3. Sinusoidal Oscillators, Types of Oscillations, LC Tank circuit and stability.</td>
<td>Refer Table 1 1. Construct a circuit to obtain triangular wave and spike from square wave. 2. Build an op-amp circuit to generate clock pulses and verify its working.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>1. Working of RC phase-shift and Wein-bridge oscillators using Op-amp and their applications. 2. Filters: Classification, Applications & Advantages of Active over Passive Filters. 3. Filter Terminology, frequency response of 1st order Butterworth LPF, HPF (No Derivation).</td>
<td>Refer Table 1 1. Design and implement /Simulate RC phase shift oscillator for generating a frequency of 1khz using BJT. Verify the same using op-amp. 2. Conduct an experiment to plot the frequency response of LPF & HPF.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
TABLE 1: Suggested activities for tutorials

The list is shared as an example and not inclusive of all possible activities of the course.

The list of activities for one week can be shared among teams in a batch of students.

<table>
<thead>
<tr>
<th>Week No.</th>
<th>Suggested activities for tutorials</th>
</tr>
</thead>
</table>
| 01 | 1. Gather knowledge and give a presentation on the type of power supply used in mobile charger, desktop computer and laptop with its specifications and Justify.
2. Build a Notch Filter to reject 50 Hz noise in power supplies and demonstrate it in the class.
3. Identify the type of UPS used in the lab, its specifications, analyze its load carrying capacity related to its power factor and prepare a report on it. |
| 02 | 1. Design and build a circuit that can store maximum voltage of the input signal (Peak Detector) and demonstrate it in the class.
2. Prepare a report on any one application of peak detector in daily life, also compare the nature of output of a rectifier and a peak detector.
3. Prepare a video of a circuit which increases the input voltage 4 times. (Quadrupler). |
| 03 | 1. Give a presentation on the use of opto isolator to detect DC or control AC signals and data.
2. Demonstrate the use of PIN diode as a switch in domestic applications.
3. Build a power supply switching circuit using optocouplers. |
|---|---|
| 04 | 1. Prepare a report on applications of each type of amplifier and present it.
2. Demonstrate any one real life application of an amplifier. |
| 05 | 1. Prepare a report and explain a specific application of emitter follower in daily life. (Ex: as switching circuit, isolator circuit, voltage buffer, impedance matching circuit).
2. Prepare a presentation on comparison of power amplifiers. |
| 06 | 1. Prepare a video/report on any one real life application of a power amplifier.
2. Build and demonstrate radio player amplifier circuit.
3. Give a presentation on low noise amplifiers. |
| 07 | 1. Explain the criteria for selecting an op-amp for a given application.
2. Identify at least 5 electronic circuits using op-amp and present the details of its working. |
| 08 | 1. Prepare a report on comparison of transistor amplifier and op-amp.
2. Demonstrate the operation of auto cut for manual stabilisers using 741 IC. |
| 09 | 1. Explain how an op-amp can be used in applications such as A/D converters, wave shaping circuits etc.
2. Prepare a report on Schmitt trigger applications such as switch debouncing, noise removal etc. |
| 10 | 1. Demonstrate the operation of a variable audio frequency oscillator using op-amp 741.
2. Explain the working of FM radio jammer. |
| 11 | 1. Discuss the problems to design and analyse 1st order butterworth filters.
2. Demonstrate how LEDs can be made to blink on the beats of music. |
| 12 | 1. Prepare a report on different applications of instrumentation amplifier
2. Explain the operation of Frequency Shift Keying (FSK) generator using PLL 565. |
1. Study the latest technological changes in this course and present the impact of these changes on industry.
2. Demonstrate the use of IC 555 timer in traffic light controller.
3. List the real life applications of IC 555 timer and explain any one application.

LINKS FOR REFERENCE.
1. https://www.teamwavelength.com/power-supply-basics/
3. www.electronicschub.org
5. https://youtu.be/mgoCeOCjiBI (Experiment 7)

E-WEBSITES FOR REFERENCE
1. Electronic Tutorials
2. Spark fun-Learning section
3. All about circuits
4. Electronics theory
5. Electronics Lab
6. Instructables

4. CIE and SEE Assessment Methodologies

<table>
<thead>
<tr>
<th>Sl. No</th>
<th>Assessment</th>
<th>Test Week</th>
<th>Duration In minutes</th>
<th>Max marks</th>
<th>Conversion</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>CIE-1 Written Test</td>
<td>5</td>
<td>80</td>
<td>30</td>
<td>Average of three tests 30</td>
</tr>
<tr>
<td>2.</td>
<td>CIE-2 Written Test</td>
<td>9</td>
<td>80</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td>CIE-3 Written Test</td>
<td>13</td>
<td>80</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td>CIE-4 Skill Test-Practice</td>
<td>6</td>
<td>180</td>
<td>100</td>
<td>Average of two skill tests 20</td>
</tr>
<tr>
<td>5.</td>
<td>CIE-5 Skill Test-Practice</td>
<td>12</td>
<td>180</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>6.</td>
<td>CIE-6 Portfolio continuous evaluation of Activity through Rubrics</td>
<td>1-13</td>
<td>10</td>
<td>10</td>
<td></td>
</tr>
</tbody>
</table>

Total CIE Marks 60
Semester End Examination (Practice) 180 100 40
Total Marks 100
5. Format for CIE (1, 2, 3) Written Test

<table>
<thead>
<tr>
<th>Course Name</th>
<th>Test</th>
<th>I/II/III</th>
<th>Sem</th>
<th>III/IV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course Code</td>
<td>Duratio n</td>
<td>80 Min</td>
<td>Marks</td>
<td>30</td>
</tr>
</tbody>
</table>

Note: Answer any one full question from each section. Each full question carries 10 marks.

<table>
<thead>
<tr>
<th>Section</th>
<th>Assessment Questions</th>
<th>Cognitive Levels</th>
<th>Course Outcome</th>
<th>Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>II</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>III</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note for the Course coordinator: Each question may have one, two or three subdivisions. Optional questions in each section carry the same weightage of marks, Cognitive level and course outcomes.

5.(a) Format for CIE-(4,5) Skill Test - Practice.

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>COs</th>
<th>Particulars/Dimension</th>
<th>Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1,2</td>
<td>Identify and test the given Electronic components</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Interpret datasheet of any one Electronic component</td>
<td>20</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>Test the working of electronic circuit using simulation.</td>
<td>20</td>
</tr>
<tr>
<td>3</td>
<td>3,4</td>
<td>Conduct an experiment on analog circuit</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>a)</td>
<td>Writing the circuit diagram, tabular column, formula</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>b)</td>
<td>Build the circuit</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>c)</td>
<td>Test, troubleshoot and demonstrate working of the circuit</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>d)</td>
<td>Result</td>
<td>10</td>
</tr>
<tr>
<td>4</td>
<td>1,2,3,4</td>
<td>PortFolio evaluation of Practice sessions through rubrics</td>
<td>20</td>
</tr>
</tbody>
</table>

Total Marks 100

6. Rubrics for Assessment of Activity (Qualitative Assessment)

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>Dimension</th>
<th>Beginner</th>
<th>Intermediate</th>
<th>Good</th>
<th>Advanced</th>
<th>Expert</th>
<th>Students Score</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>4</td>
<td>6</td>
<td>8</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Descriptor</td>
<td>Descriptor</td>
<td>Descriptor</td>
<td>Descriptor</td>
<td>Descriptor</td>
<td>Descriptor</td>
<td>8</td>
</tr>
<tr>
<td>2</td>
<td>Descriptor</td>
<td>Descriptor</td>
<td>Descriptor</td>
<td>Descriptor</td>
<td>Descriptor</td>
<td>Descriptor</td>
<td>6</td>
</tr>
<tr>
<td>3</td>
<td>Descriptor</td>
<td>Descriptor</td>
<td>Descriptor</td>
<td>Descriptor</td>
<td>Descriptor</td>
<td>Descriptor</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>Descriptor</td>
<td>Descriptor</td>
<td>Descriptor</td>
<td>Descriptor</td>
<td>Descriptor</td>
<td>Descriptor</td>
<td>2</td>
</tr>
</tbody>
</table>

Average Marks = (8+6+2+2)/4 = 4.5

Students Score 5

Note: Dimension and Descriptor shall be defined by the respective course coordinator as per the activities.
7. Reference:

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Op-amps and linear integrated circuits, Ramakanth A. Gayakwad, ISBN- 9780132808682</td>
</tr>
<tr>
<td>4</td>
<td>Electronic Devices and Circuits, David A. Bell, Oxford University Press, ISBN9780195693409</td>
</tr>
</tbody>
</table>

8. SEE Scheme of Evaluation

<table>
<thead>
<tr>
<th>SL. No.</th>
<th>COs</th>
<th>Particulars/Dimension</th>
<th>Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.2</td>
<td>Identify and test the given Electronic components - 10 Marks</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Interpret datasheet of any one Electronic component -10 Marks</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>Test the working of electronic circuit using simulation.</td>
<td>20</td>
</tr>
<tr>
<td>3</td>
<td>3,4</td>
<td>Conduct an experiment on analog circuit</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>a</td>
<td>Writing the circuit diagram, tabular column, formula - 10 Marks</td>
<td></td>
</tr>
<tr>
<td></td>
<td>b</td>
<td>Build the circuit -10 Marks</td>
<td></td>
</tr>
<tr>
<td></td>
<td>c</td>
<td>Test, troubleshoot and demonstrate working of the circuit - 10 Marks</td>
<td></td>
</tr>
<tr>
<td></td>
<td>d</td>
<td>Result - 10 Marks</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>1,2,3,4</td>
<td>Viva-Voce</td>
<td>20</td>
</tr>
</tbody>
</table>

Total Marks 100

9. Equipment/software list with Specification for a batch of 20 students

<table>
<thead>
<tr>
<th>SL. No.</th>
<th>Particulars</th>
<th>Specification</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Computers</td>
<td>Intel Core i5 11th gen/8GB RAM/1 TB HDD/256GB SSD/ Graphics 2 GB</td>
<td>20</td>
</tr>
<tr>
<td>2</td>
<td>MATLAB /PSPICE/Electronic Workbench Software for simulation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Regulated Power Supply (Single)</td>
<td>1A/2A 0-30V</td>
<td>10</td>
</tr>
<tr>
<td>4</td>
<td>Regulated Power Supply (Dual)</td>
<td>1A/2A 0-30V</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>Description</td>
<td>Specifications</td>
<td>Quantity</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>----------------------------------</td>
<td>----------</td>
</tr>
<tr>
<td>5</td>
<td>DC Voltage supply</td>
<td>(+/-5v, +/-12V, +/-15V)</td>
<td>10</td>
</tr>
<tr>
<td>6</td>
<td>Digital multimeters</td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>7</td>
<td>Function/Signal generator</td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>8</td>
<td>Dual trace oscilloscope</td>
<td>Upto 20-30MHz</td>
<td>10</td>
</tr>
<tr>
<td>9</td>
<td>Electronic consumables (Diode, Transistor(npn and pnp), Resistors, Inductors, Capacitors, Special purpose diodes, etc)</td>
<td>Consumables as required</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Step down transformers</td>
<td>6-0-6v</td>
<td>10 each</td>
</tr>
<tr>
<td></td>
<td></td>
<td>12-0-12v</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>OP-amps</td>
<td>741 IC</td>
<td>20</td>
</tr>
<tr>
<td>12</td>
<td>IC 555</td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>13</td>
<td>Single strand wire/patch cards</td>
<td>Different lengths</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Probes</td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>15</td>
<td>Breadboard/Analog trainer kit</td>
<td></td>
<td>10</td>
</tr>
</tbody>
</table>
Digital Electronics is a field of electronics involving the study of digital signals and engineering of devices that use or produce them. It is very important in today’s life because if digital circuits are used instead of analog circuits the signals can be transmitted without degradation due to noise. Also in a digital system information stored is easier than that of analog systems. The functionality of digital circuits can be changed easily with the help of software without changing the actual circuit. Verilog, a Hardware Description Language, is used for describing digital electronic circuits and systems. It is used for verification of digital circuits through simulation, for timing analysis, for test analysis and for logic synthesis.

2. Course Outcomes: On successful completion of the course, the students will be able to:

<table>
<thead>
<tr>
<th>CO-01</th>
<th>List the types of Verilog modeling and the use of each model for specific application</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO-02</td>
<td>Design and construct a sequential circuit for a given application and test the circuit to obtain the desired result/output.</td>
</tr>
<tr>
<td>CO-03</td>
<td>Compare and contrast combinational and sequential circuits and simulate a given circuit using Verilog descriptions to test to obtain the desired result/output.</td>
</tr>
<tr>
<td>CO-04</td>
<td>List the various types of A to D, D to A converters along with memory and for a given application select the appropriate converters and/or memory types to be used to obtain the given result/output.</td>
</tr>
</tbody>
</table>

3. Course Content

<table>
<thead>
<tr>
<th>Week</th>
<th>CO</th>
<th>PO</th>
<th>Lecture (Knowledge Criteria)</th>
<th>Tutorial (Activity Criteria)</th>
<th>Practice (Performance Criteria)</th>
</tr>
</thead>
</table>
| 1 | 1 | 1,4,5, 6,7 | 1. VLSI - Introduction, Importance & Need. HDL- Introduction, Importance, Need & Types.
2. Introduction to Verilog HDL, Types of modeling- Switch level, Structural, Data flow and Behavioral.
3. Basic Concepts- Lexical conventions, comments, keywords, identifiers, strings. | Refer Table 1 | 1. Familiarization of Xilinx software.
2. Familiarization of FPGA/CPLD KIT. |
<table>
<thead>
<tr>
<th>Page</th>
<th>Week</th>
<th>Sections</th>
<th>Exercises</th>
</tr>
</thead>
</table>
| 2 | 1 | 1,2,4 | 1. Demonstrate and Practice simple examples using different data types.
2. Compute the output for expressions having different operators using simple programs. |
| | | | Refer Table 1 |
| 3 | 1,3 | 1,2,3, 6| 1. Program structure - Module declaration, port declaration, port connection.
2. Gate level modeling for basic gates.
3. Gate level Verilog description for half adder, full adder. |
| | | | Refer Table 1 |
| 4 | 1,3 | 1,2,3, 4,6| 1. Data flow modeling - Continuous assignment, Module instantiations, net declaration, delays, expressions.
2. Data flow Verilog description of multiplexer and demultiplexer.
3. Data flow Verilog description for 4-bit comparator |
| | | | Refer Table 1 |
| 5 | 1,3 | 2,3,4, 6| 1. System tasks - display, strobe, monitor, reset, stop, finish.
Compiler directives - include, define.
Behavioral modeling - Always and Initial statements.
2. Procedural Assignments - Blocking and non-blocking assignments.
Timing Control - Delay, Event
3. Conditional statements - if, if-else, Case, Loops - While, For, Repeat, Forever. |
| | | | Refer Table 1 |
| 6 | 1,3 | 1,2,3, 4,6| 1. Behavioral Verilog description for BCD to seven segment decoder for common anode display using if-else, Case.
3. Test bench - Need, Importance, testbench for half adder. |
| | | | Refer Table 1 |

Refer Table 1
<table>
<thead>
<tr>
<th>Page</th>
<th>Exercises</th>
<th>Relevant Topics</th>
</tr>
</thead>
</table>
| 7 | 1,2,3,4,6,7 | 1. Sequential circuits - Introduction. Flip flops types, SR flip flop - Gate level circuit using NAND gates, truth table, working, timing diagram.
2. JK, JK-MS flip flops - Logic circuit, truth table, working, timing diagram.
| | | Refer Table 1
2. Implement D and T Flip flops using JK flip flop in digital trainer kit and observe the timing diagram. |
| 8 | 2,3 | 1. Verilog description of SR flip flops using data flow modeling.
3. Registers - Classification of registers, realization of simple (3 or 4 bit) SISO using flip-flops. |
| | 1,2,3,4 | Write the verilog code, simulate and download to FPGA/CPLD kit for the following.
1. SR, JK flip flops using data flow modeling
2. D, T flip flops using behavioral modeling |
| 9 | 2,3 | 1. Realization of SIPO, PISO and PIPO using flip flops.
| | 1,2,3,4,6,7 | Construct and verify the working of the following using suitable IC in digital trainer kit
1. SISO, SIPO, PISO and PIPO(4-bit) shift registers.
2. Ring and Johnson counter(4-bit). |
2. Working and realization of synchronous (3-bit/4-bit) counters and their comparison.
3. Realization of partial mod (mod n) counters - asynchronous, synchronous. |
| | 1,3,4,6,7 | Construct and verify the working of the following using digital trainer kit
1. 3 bit ripple counter using IC 7476.
2. 4 bit counter as a frequency divider. |
| 11 | 3,4 | 1. Realization of higher-mod counters using lower-mod counters. Concept of up/ down counters.
2. Verilog description of any one counter using any modeling.
3. Data converters - Need for DAC and ADC, DAC specifications, types, working of Weighted resistor type. |
| | 1,2,6,7 | 1. Write the verilog code, simulate and download to FPGA/CPLD kit for an up/down counter using behavioral modeling.
2. Construct/Simulate and verify the working of R-2R DAC. |
| 12 | 4 | 1. ADC specifications, types, working of Flash ADC. |
| | 1,2,3,4,6,7 | Construct/Simulate and verify the working of Flash ADC. |
2. Working of Successive approximation and dual slope ADCs.
3. Memory devices- Introduction, classification based on different criteria, read and write operations.

13 4 1,2,3,4,7 1. Introduction to PLDs- PAL, PLA, CPLD, FPGA, ASIC.
IC Design Verification – Types & Stages.
2. PAL- Architecture, Implementation of a Boolean expressions using PAL.
3. PLA-Architecture, Implementation of a Boolean expressions using PLA.

Refer Table 1

1. Implementation of Boolean expressions using PAL.
2. Implementation of Boolean expressions using PLA.

Total in hours 39 13 52

Note: 1) In Practice sessions Video demonstration should be followed by MCQs/Quiz/Subjective questions and the evaluation has to be documented.
2) In Practice sessions, all circuits should be simulated using suitable software before its construction and verification.

TABLE 1: Suggested activities for tutorials

The list is shared as an example and not inclusive of all possible activities of the course.
The list of activities for one week can be shared among teams in a batch of students.

<table>
<thead>
<tr>
<th>Week No.</th>
<th>Suggested activities for tutorials</th>
</tr>
</thead>
</table>
| 01 | 1. Explain the typical design flow for VLSI IC Circuits.
 | 2. Give a presentation on comparison of different types of HDLs.
 | 3. Give a presentation on comparison of different types of modeling in Verilog. |
| 02 | 1. Prepare a report on declaration and initialization of variables of different data types in Verilog.
 | 2. Prepare a report on hierarchy of operators. |
| 03 | 1. Explain basic components of a module? Which components are mandatory?
 | 2. Prepare a report on Hierarchical names for variables.
 | 3. Write and explain a Verilog code for 4:1 mux and 1:4 demux using gate level modeling. |
| 04 | 1. Write and explain the Verilog code for full adder using data flow modeling.
2. Write and explain the Verilog code for 8:1 mux using data flow modeling. |
| 05 | 1. Give a presentation on the differences between tasks and functions
2. Illustrate the use of system tasks with examples.
3. Illustrate the use of gate delays to model timing for a simple logic equation. |
| 06 | 1. Compare if-else and case statements with the help of examples.
2. Compare all loops with the help of examples.
3. Write and explain the verilog code for full subtractor and 1:8 demux using behavioral modeling.
4. Explain the Verilog Test bench with an example to verify the HDL designs. |
| 07 | 1. Prepare a report on differences between Combinational and Sequential circuits with examples.
2. Give a presentation on application of flip flop as bounce elimination switch.
3. Demonstrate the working of flip flop as a one bit memory element. |
| 08 | 1. Prepare a report on flip flop ICs and their features.
2. Give a presentation on eliminating race-around condition in JK flip flop.
3. Compare the advantages and disadvantages of all flip flops. |
| 09 | 1. Prepare a report on shift register ICs and their features.
2. Give a presentation on applications of shift registers in real life.
3. Demonstrate the working of IC 7495 as shift register. |
| 10 | 1. Prepare a report on differences between asynchronous and synchronous counters.
2. Give a presentation on how counters can be used in a simple car parking system.
3. Give a presentation on implementation of footfall counter for various purposes |
| 11 | 1. Prepare a report & explain the specifications of DAC and ADC ICs.
2. Give a presentation on any application of DAC in real life.
3. Give a presentation on any application of ADC in real life. |
12. Prepare a report & explain the types of RAM and ROM.
 2. Give a presentation on usage of RAM and ROM in different digital devices.

13. 1. Study the latest technological changes in this course and present the impact of these changes on industry.
 2. Prepare a report on CPLD, FPGA and ASIC and its applications.
 3. Give a presentation on importance or scope of Design Verification in Integrated circuit designs.

LINKS.
2. https://youtu.be/XES0QUi8ttY (week 11, exp 2)
3. https://www.youtube.com/watch?v=krmXg-WTbIU (week 12, exp 1)
5. https://youtu.be/vHlgQLGIQ (week 7, exp 3)
6. https://youtu.be/AtX5x53FclI (week 9, exp 3)
7. https://youtu.be/Bx4rsUAGoM

4. CIE and SEE Assessment Methodologies

<table>
<thead>
<tr>
<th>Sl. No</th>
<th>Assessment</th>
<th>Test Week</th>
<th>Duration In minutes</th>
<th>Max marks</th>
<th>Conversion</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>CIE-1 Written Test</td>
<td>5</td>
<td>80</td>
<td>30</td>
<td>Average of three tests 30</td>
</tr>
<tr>
<td>2</td>
<td>CIE-2 Written Test</td>
<td>9</td>
<td>80</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>CIE-3 Written Test</td>
<td>13</td>
<td>80</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>CIE-4 Skill Test-Practice</td>
<td>6</td>
<td>180</td>
<td>100</td>
<td>Average of two skill tests 20</td>
</tr>
<tr>
<td>5</td>
<td>CIE-5 Skill Test-Practice</td>
<td>12</td>
<td>180</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>CIE-6 Portfolio continuous evaluation of Activity through Rubrics</td>
<td>1-13</td>
<td>10</td>
<td>10</td>
<td></td>
</tr>
</tbody>
</table>

Total CIE Marks 60
Semester End Examination (Practice) 180 100 40
Total Marks 100

5. Format for CIE (1,2,3) Written Test

<table>
<thead>
<tr>
<th>Course Name</th>
<th>Logic Design Using Verilog</th>
<th>Test</th>
<th>1/II/III</th>
<th>Sem</th>
<th>III/IV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course Code</td>
<td>20EC32P</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Duration</td>
<td>80 Min</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Marks</td>
<td>30</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: Answer any one full question from each section. Each full question carries 10 marks.

<table>
<thead>
<tr>
<th>Section</th>
<th>Assessment Questions</th>
<th>Cognitive Levels</th>
<th>Course Outcome</th>
<th>Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Note for the Course coordinator: Each question may have one, two or three subdivisions. Optional questions in each section carry the same weightage of marks, Cognitive level and course outcomes.

5. (a) Format for CIE-4 Skill Test - Practice.

<table>
<thead>
<tr>
<th>SL. No.</th>
<th>COs</th>
<th>Particulars/Dimension</th>
<th>Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>List the types of Verilog modelling and the use of each model for specific application.</td>
<td>20</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>Write two Verilog programs on combinational circuits for a given application</td>
<td>70</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Simulation</td>
<td>-40 Marks</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>-20 Marks</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Download to FPGA kit</td>
<td>-10 Marks</td>
</tr>
<tr>
<td>3</td>
<td>1,3</td>
<td>PortFolio evaluation of Practice sessions through rubrics</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Total Marks</td>
<td>100</td>
</tr>
</tbody>
</table>

5. (b) Format for CIE-5 Skill Test - Practice.

<table>
<thead>
<tr>
<th>SL. No.</th>
<th>COs</th>
<th>Particulars/Dimension</th>
<th>Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>Write a Sequential circuit for a given application</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Conduction using DTK</td>
<td>-20 Marks</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Output</td>
<td>-20 Marks</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>-10 Marks</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>Write a Verilog program on Sequential circuits for a given application</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Marks</td>
<td>-10 Marks</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Simulation</td>
<td>-5 Marks</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Output</td>
<td>-5 Marks</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>Identify various types of A to D, D to A converters/ memory for a given application & select the appropriate converters/ memory types needed to obtain the required output.</td>
<td>20</td>
</tr>
<tr>
<td>4</td>
<td>2,3,4</td>
<td>Portfolio evaluation of Practice sessions through rubrics.</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Total Marks</td>
<td>100</td>
</tr>
</tbody>
</table>

6. Rubrics for Assessment of Activity (Qualitative Assessment)

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>Dimension</th>
<th>Beginner</th>
<th>Intermediate</th>
<th>Good</th>
<th>Advanced</th>
<th>Expert</th>
<th>Students Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>2</td>
<td>4</td>
<td>6</td>
<td>8</td>
<td>10</td>
<td>8</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>2</td>
<td>6</td>
<td>8</td>
<td>10</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>2</td>
<td>6</td>
<td>8</td>
<td>10</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>2</td>
<td>6</td>
<td>8</td>
<td>10</td>
<td></td>
<td>2</td>
</tr>
</tbody>
</table>

Note: Dimension and Descriptor shall be defined by the respective course coordinator as per the activities.
7. Reference:

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Fundamentals of Digital Logic with Verilog Design by Stephen Brown and Zvonko Vranesic</td>
</tr>
<tr>
<td>2</td>
<td>Verilog HDL by Samir Palnikar</td>
</tr>
<tr>
<td>3</td>
<td>Introduction to Verilog-Peter M Nyasulu</td>
</tr>
<tr>
<td>4</td>
<td>Verilog Tutorial-Deepak Kumar Tala</td>
</tr>
</tbody>
</table>

8. SEE Scheme of Evaluation

<table>
<thead>
<tr>
<th>SL. No.</th>
<th>COs</th>
<th>Particulars/Dimension</th>
<th>Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>List the types of Verilog modelling and the use of each model for specific application</td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>Write a Sequential circuit for a given application -10 Marks</td>
<td>30</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>Write a Verilog program for a given application -10 Marks</td>
<td>30</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>Identify various types of A to D, D to A converters and memory and for a given application & select the appropriate converters and/or memory types needed to obtain the given output.</td>
<td>10</td>
</tr>
<tr>
<td>5</td>
<td>1,2,3,4</td>
<td>Viva-Voce</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Total Marks</td>
<td>100</td>
</tr>
</tbody>
</table>

9. Equipment/software list with Specification for a batch of 20 students

<table>
<thead>
<tr>
<th>SL. No.</th>
<th>Particulars</th>
<th>Specification</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Computers</td>
<td>Intel Core i5 11th gen/8GB RAM/1 TB HDD/256GB SSD/ Graphics 2 GB</td>
<td>20</td>
</tr>
<tr>
<td>2</td>
<td>Xilinx software</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Digital trainer kits</td>
<td></td>
<td>20</td>
</tr>
<tr>
<td>4</td>
<td>Verilog kits</td>
<td></td>
<td>20</td>
</tr>
<tr>
<td>5</td>
<td>Dual trace oscilloscope</td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>6</td>
<td>Digital multimeters</td>
<td></td>
<td>05</td>
</tr>
<tr>
<td>7</td>
<td>Patch cards</td>
<td>different length</td>
<td>250</td>
</tr>
<tr>
<td>8</td>
<td>Digital IC Tester</td>
<td></td>
<td>02</td>
</tr>
<tr>
<td>9</td>
<td>ICS</td>
<td>7400,7402,7404,7408,7432,7486,7442,7445,7446,7474,7476,7427,7489,7490,7494,7495,74141,74148,74153,74157,74155,74193,74194,DAC0808,ADC-0800,741</td>
<td>10 each</td>
</tr>
</tbody>
</table>
1. **Rationale**

The communication system describes the information exchange between any two points. The process of transmission and reception of information is called communication. Without communication the world ceases to exist. Information or Data can be transmitted and received across any part of the world by adapting suitable techniques, process and medium, hence making the world reachable and smaller through Technology.

2. **Course Outcomes**: On successful completion of the course, the students will be able to:

 - **CO-01**: Identify all the components of a communication system, list their role and characteristics in the system.
 - **CO-02**: Propagate a signal through a transmission medium to obtain a desired output for given conditions in the communication system.
 - **CO-03**: Construct an analog/digital communication system for a given application and demonstrate its working either in a Real or Simulated environment.

3. **Course Content**

<table>
<thead>
<tr>
<th>Week</th>
<th>CO</th>
<th>Lecture (Knowledge Criteria)</th>
<th>Tutorial (Activity Criteria)</th>
<th>Practice (Performance Criteria)</th>
</tr>
</thead>
</table>
| 1 | 1 | **Network theorems**
1. Superposition theorem- statement and explanation with an example.
3. Thevenin's theorem and Norton’s theorem-statements and explanation with an example each. | Refer Table 1 | 1. Construct and verify maximum power transfer theorem.
2. Construct and verify Thevenin’s theorem. |
<table>
<thead>
<tr>
<th>Page</th>
<th>Section</th>
<th>Notes</th>
<th>Exercises</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Filters</td>
<td>Filters
1. Classification of filters, cut-off frequency, pass band and stop band.
2. Ideal characteristics curve of passive LPF, HPF, BPF and BRF.
3. Circuit diagram & formula for cut-off frequency of T and Π configurations of LPF and HPF. Refer Table 1</td>
<td>1. Construct and test the passive low-pass T-type filter circuit for a given cut-off frequency.
2. Construct and test the passive high-pass Π-type filter circuit for a given cut-off frequency.</td>
</tr>
<tr>
<td>4</td>
<td>Attenuators</td>
<td>Attenuators
1. Classification and applications of attenuators. Definition of Bel, Decibel and Neper.
2. Symmetrical T type attenuator - Circuit diagram, expression for attenuation.
3. Symmetrical Π type attenuator - Circuit diagram, expression for attenuation Refer Table 1</td>
<td>1. Construct and test T type attenuator circuit for the given attenuation & Ro.
2. Construct and test Π type attenuator circuit for the given attenuation & Ro.</td>
</tr>
<tr>
<td>5</td>
<td>Transmission Media</td>
<td>Transmission Media
1. Need, different types of transmission media (guided, unguided), Transmission lines - Electrical model, Primary constants - R, L, G and C, Secondary constants - Characteristic Impedance and Propagation Constant.
2. Optical fiber - principle of operation, Numerical aperture, Angle of acceptance, Classification, fiber losses.
3. Basic components of Fiber optic system, splices, connectors, couplers and switches. Refer Table 1</td>
<td>1. Demonstrate PC to PC communication using Fiber Optic Digital Link.
2. Demonstrate installation, testing, repair and power budgeting of fiber optic cable (using simulator/video)</td>
</tr>
<tr>
<td>6</td>
<td>Antennas</td>
<td>Antennas
1. Concept of electric and magnetic fields in a dipole, antenna terminology - polarization, radiation pattern, antenna gain, directive gain, directivity, power gain, antenna resistance. Refer Table 1</td>
<td>1. Video demonstration and documentation on the working of the dipole antenna and observe its radiation pattern.</td>
</tr>
<tr>
<td>2</td>
<td>Antenna efficiency, beam width, bandwidth, isotropic radiators. Effects of ground on antennas, effect of antenna height, Antenna types, examples and applications.</td>
<td>2. Video demonstration and documentation of antenna types with examples and applications.</td>
<td></td>
</tr>
<tr>
<td>2. Antenna efficiency, beam width, bandwidth, isotropic radiators. Effects of ground on antennas, effect of antenna height, Antenna types, examples and applications.</td>
<td>2. Video demonstration and documentation of antenna types with examples and applications.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Working of Dish Antenna, Feed mechanisms-Cassegrain and Horn feed.</td>
<td>2. Video demonstration and documentation of antenna types with examples and applications.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No.</td>
<td>Week</td>
<td>Hours</td>
<td>Topics</td>
</tr>
<tr>
<td>-----</td>
<td>------</td>
<td>-------</td>
<td>--------</td>
</tr>
</tbody>
</table>
| 10 | 13 | 1,3,4,6 | Digital Coding
1. Quantization - process, classification. Quantization noise and companding process.
2. PCM and DPCM system.
3. Delta modulation and adaptive delta modulation system.
Refer Table 1 |
| 11 | 1,3 | 1,2,4,6 | 1. Baseband transmission - significance of inter symbol interference (ISI) and eye pattern. Digital modulation techniques-types.
2. Generation and detection of Binary ASK and Binary FSK.
3. Generation and detection of Binary PSK and QPSK.
Refer Table 1 |
| 12 | 1,3 | 1,2,6,7 | Multiplexing
1. FDM & TDM - concept applications
2. PAM/TDM system - Block diagram, transmission bandwidth, synchronization, crosstalk and guard time.
Refer Table 1 |
| 13 | 3 | 1,2,4,6 | Error detection & correction
1. Errors-types, redundancy, error control schemes.
2. Error control codes- types, Parity check bit coding, error detection methods-LRC.
3. VRC, CRC, Checksum with examples.
Refer Table 1 |

Total in hours: 39
Note: 1. In Practice sessions Video demonstration should be followed by MCQs/Quiz/Subjective questions and the evaluation has to be documented.
2. In Practice sessions, all discrete circuits should be simulated using suitable software before its construction and verification.

TABLE 1: Suggested activities for tutorials
The list is shared as an example and not inclusive of all possible activities of the course.
The list of activities for one week can be shared among teams in a batch of students.
<table>
<thead>
<tr>
<th>Week No.</th>
<th>Suggested activities for tutorials</th>
</tr>
</thead>
</table>
| 01 | 1. Write a report on implementation fields of all the theorems.
 | 2. Solve problems on all theorems. |
| 02 | 1. Give a presentation on demonstrations of series and parallel resonance.
 | 2. Solve problems on series and parallel resonance. |
| 03 | 1. Write a report on the needs of LPF, HPF, BPF, BRF and their comparison.
 | 2. Give a presentation on the working of BPF & BRF.
 | 3. Solve problems on Filters. |
| 04 | 1. Give a presentation on the relationship between Bel, Decibel and Neper.
 | 2. Give a presentation on the importance of attenuators in communication circuits. |
| 05 | 1. Prepare a report on properties of light and its significance in optical communication.
 | 2. Visit a nearest telephone exchange, collect and prepare a handwritten brief report on optical fibers for the communication purpose with specifications.
 | 3. Present a report on the FIBERNET broadband and compare it with traditional broadband. |
| 06 | 1. Give a presentation on miniature antennas.
 | 2. Demonstrate how a mobile phone antenna performance can be improved.
 | 3. Study the technical paper and present it. [Link](https://documentcloud.adobe.com/link/review?uri=urn:aaid:scds:US:3d5cab35-a6d0-49e4-b4b3-06c745d34d98) |
| 07 | 1. Give a presentation on uses of each range of frequency in the Electromagnetic spectrum.
 | 2. Give a presentation on different types of wave propagation.
 | 3. Demonstration and explain different waveforms in Analog modulation. |
| 08 | 1. Give a presentation on working of superheterodyne receiver.
 | 2. Prepare a report on the merits, demerits and applications of AM and FM.
 | 3. Collect the specifications of FM receivers and explain it. |
| 09 | 1. Give a presentation on comparison of analog and digital communication.
 | 2. Collect and prepare a report on the functional blocks in the digital communication system such as scramblers, unscramblers, equalizers with applications.
 | 3. Give a presentation on types of sampling. |
10

1. Give a presentation on advantages, disadvantages and applications of PCM and DPCM.
2. Give a presentation on advantages, disadvantages and applications of delta modulation and adaptive delta modulation.

11

1. Prepare a report on the type of digital modulation technique used for voice signal transmission in telephone systems.
2. Give a presentation on generation and detection of DPSK.
3. Give a presentation on comparison of digital modulation techniques.

12

1. Give a presentation on applications of TDM and FDM.
2. Prepare a report on the type of multiplexing used in mobile communication with specifications of multiplexer.

13

1. Study the latest technological changes in this course and present the impact of these changes on industry.
2. Give a presentation on the merits, demerits and applications of all error detection methods.

Links.
1. https://www.gopracticals.com/electrical/basic-electrical/verify-thevenin-theorem/
2. https://youtu.be/Ok7DjGQuULQ
6. https://youtu.be/r4NikIMA4dQ
7. https://youtu.be/8P6DBAxbQxY
8. https://youtu.be/O0ZbuuPruJw

4. CIE and SEE Assessment Methodologies

<table>
<thead>
<tr>
<th>Sl. No</th>
<th>Assessment</th>
<th>Test Week</th>
<th>Duration In minutes</th>
<th>Max marks</th>
<th>Conversion</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>CIE-1 Written Test</td>
<td>5</td>
<td>80</td>
<td>30</td>
<td>Average of three tests 30</td>
</tr>
<tr>
<td>2</td>
<td>CIE-2 Written Test</td>
<td>9</td>
<td>80</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>CIE-3 Written Test</td>
<td>13</td>
<td>80</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>CIE-4 Skill Test-Practice</td>
<td>6</td>
<td>180</td>
<td>100</td>
<td>Average of two skill tests 20</td>
</tr>
<tr>
<td>5</td>
<td>CIE-5 Skill Test-Practice</td>
<td>12</td>
<td>180</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>CIE-6 Portfolio continuous evaluation of Activity through Rubrics</td>
<td>1-13</td>
<td></td>
<td>10</td>
<td></td>
</tr>
</tbody>
</table>

Total CIE Marks 60
Semester End Examination (Practice) 180 100 40

Total Marks 100
5. Format for CIE (1, 2, 3) Written Test

<table>
<thead>
<tr>
<th>Course Name</th>
<th>Communication Systems</th>
<th>Test</th>
<th>I/II/III</th>
<th>Sem</th>
<th>III/IV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course Code</td>
<td>20EC33P</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Duration</td>
<td>80 Min</td>
<td>Marks</td>
<td>30</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: Answer any one full question from each section. Each full question carries 10 marks.

<table>
<thead>
<tr>
<th>Section</th>
<th>Assessment Questions</th>
<th>Cognitive Levels</th>
<th>Course Outcome</th>
<th>Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>II</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>III</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note for the Course coordinator: Each question may have one, two or three subdivisions. Optional questions in each section carry the same weightage of marks, Cognitive level and course outcomes.

5. (a). Format for CIE-4 Skill Test - Practice

<table>
<thead>
<tr>
<th>SL. No.</th>
<th>COs</th>
<th>Particulars/Dimension</th>
<th>Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>Conduct an experiment on Network Theorems/ Resonance/ Filters/ Attenuators</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Writing schematic diagram</td>
<td>-20</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Conduction</td>
<td>-30</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Result</td>
<td>-10</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>Conduct an experiment on Transmission media/Antennas</td>
<td>30</td>
</tr>
<tr>
<td>3</td>
<td>1,2</td>
<td>Portfolio evaluation of Practice sessions through Rubrics</td>
<td>10</td>
</tr>
</tbody>
</table>

Total Marks 100

5. (b). Format for CIE-5 Skill Test - Practice

<table>
<thead>
<tr>
<th>SL. No.</th>
<th>COs</th>
<th>Particulars/Dimension</th>
<th>Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>Explain propagation of signals through transmission media to obtain desired output.</td>
<td>20</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>Demonstrate an analog/digital modulation / demodulation technique</td>
<td>70</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Write schematic diagram (2 Circuits)</td>
<td>-30</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Conduction using kit</td>
<td>-20</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Result</td>
<td>-20</td>
</tr>
<tr>
<td>3</td>
<td>2,3</td>
<td>Portfolio evaluation of Practice sessions through Rubrics</td>
<td>10</td>
</tr>
</tbody>
</table>

Total Marks 100
6. Rubrics for Assessment of Activity (Qualitative Assessment)

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>Dimension</th>
<th>Beginner</th>
<th>Intermediate</th>
<th>Good</th>
<th>Advanced</th>
<th>Expert</th>
<th>Students Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Descriptor</td>
<td>2</td>
<td>4</td>
<td>6</td>
<td>8</td>
<td>10</td>
<td>8</td>
</tr>
<tr>
<td>2</td>
<td>Descriptor</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>3</td>
<td>Descriptor</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>Descriptor</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
</tr>
</tbody>
</table>

Average Marks = (8 + 6 + 2 + 2) / 4 = 4.5

Note: Dimension and Descriptor shall be defined by the respective course coordinator as per the activities

7. Reference:

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Electronic communications</td>
</tr>
<tr>
<td>2</td>
<td>Advanced Electronics Communication System</td>
</tr>
<tr>
<td>3</td>
<td>Understanding communication systems</td>
</tr>
<tr>
<td>4</td>
<td>Fiber Optic Communication Systems,</td>
</tr>
<tr>
<td>5</td>
<td>Principles of Electronic Communication Systems</td>
</tr>
<tr>
<td>6</td>
<td>Digital and analog communication systems</td>
</tr>
</tbody>
</table>

8. SEE Scheme of Evaluation

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>COs</th>
<th>Particulars/Dimension</th>
<th>Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>Conduct an experiment on Network Theorems/ Resonance/ Filters/ Attenuators</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Writing schematic diagram - 15 Marks</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Conduction - 15 Marks</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Result - 10 Marks</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>Identify the type of Transmission media/Antenna used in a given application</td>
<td>10</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>Demonstrate an analog/digital modulation / demodulation technique</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Write schematic diagram - 10 Marks</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Conduction using kit - 10 Marks</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Result - 10 Marks</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>1,2,3</td>
<td>Viva-voce</td>
<td>20</td>
</tr>
</tbody>
</table>

Total Marks = 100
Equipment/software list with Specification for a batch of 20 students

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>Particulars</th>
<th>Specification</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Computers</td>
<td>Intel Core i5 11th gen/8GB RAM/1 TB HDD/256GB SSD/Graphics 2 GB</td>
<td>20</td>
</tr>
<tr>
<td>2</td>
<td>MATLAB/PSPICE/Electronic Workbench Software Simulator</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Amplitude modulation and demodulation trainer kits</td>
<td></td>
<td>05</td>
</tr>
<tr>
<td>4</td>
<td>Frequency modulation and demodulation trainer kits</td>
<td></td>
<td>05</td>
</tr>
<tr>
<td>5</td>
<td>Generation and detection BASK,BFSK,BPSK trainer kits</td>
<td></td>
<td>05 each</td>
</tr>
<tr>
<td>6</td>
<td>Regulated Power supply</td>
<td>(1A/2A, 0-30V)</td>
<td>10</td>
</tr>
<tr>
<td>7</td>
<td>Dual trace oscilloscope</td>
<td>up to 20 to 30MHz</td>
<td>10</td>
</tr>
<tr>
<td>8</td>
<td>Digital multimeters</td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>9</td>
<td>Function/Signal generators</td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>10</td>
<td>Step down transformer, Capacitors, Resistors, Inductors, BJT, Opamp IC-741, Regulator IC-7812, Diode</td>
<td>Consumables as required</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Single strand wire/Patch cards (different lengths)</td>
<td></td>
<td>150</td>
</tr>
<tr>
<td>12</td>
<td>Probes</td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>13</td>
<td>Analog trainer kit</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>14</td>
<td>DC Voltage supply</td>
<td>(+/-5v, +/-12V, +/-15V)</td>
<td>10</td>
</tr>
<tr>
<td>15</td>
<td>Kit to demonstrate Sampling theorem and aliasing effect</td>
<td></td>
<td>05</td>
</tr>
<tr>
<td>16</td>
<td>Kit to demonstrate PCM</td>
<td></td>
<td>05</td>
</tr>
<tr>
<td>17</td>
<td>Delta Modulation and Detection trainer kit</td>
<td></td>
<td>05</td>
</tr>
<tr>
<td>18</td>
<td>Adaptive Delta Modulation and Detection trainer kit</td>
<td></td>
<td>05</td>
</tr>
<tr>
<td>19</td>
<td>Optical fiber communications trainer kit to cover all the experiments.</td>
<td></td>
<td>05</td>
</tr>
<tr>
<td>20</td>
<td>Computers</td>
<td>Pentium and higher,8GB RAM,512 HDD</td>
<td>20</td>
</tr>
<tr>
<td>21</td>
<td>Tool kit</td>
<td></td>
<td>02 set</td>
</tr>
</tbody>
</table>
1. **Rationale**

The instruments used to measure any Electrical/Electronic quantity are known as measuring instruments. The standards of measurements are very useful for calibration of measuring instruments. They help in minimizing the errors in the measuring systems. Testing Techniques are means of enhancing troubleshooting and the ability to learn skills. It keeps electronic equipment in working condition and ensures safety. The damage of the equipment can be significantly reduced.

2. **Course Outcomes**: At the end of the Course, the student will be able to:

 - **CO-01**: List the types of measurement and common errors that occur while using electronic measuring systems and demonstrate use of statistical analysis to validate specific output from measuring and testing equipment.
 - **CO-02**: Explain the standards used for calibration and demonstrate calibration of a measuring and/or testing equipment to ensure it provides reliable output.
 - **CO-03**: Select an appropriate sensor or transducer for a given application and demonstrate its use to measure and record the readings for a given project.
 - **CO-04**: Test a given lab equipment, identify the reasons for error, troubleshoot or calibrate to ensure the equipment provides the correct reading.

3. **Course Content**

<table>
<thead>
<tr>
<th>Week</th>
<th>CO</th>
<th>PO</th>
<th>Lecture (Knowledge Criteria)</th>
<th>Tutorial (Activity Criteria)</th>
<th>Practice (Performance Criteria)</th>
</tr>
</thead>
</table>
| 1. | 1 | 1,4,6 | 1. Necessity of measurements-direct and indirect methods, Static characteristics of an instrument.
3. Errors-classification of errors, sources of errors. | Refer Table 1 | 1. Find the static characteristics of analog voltmeter/multimeter.
2. Find the dynamic characteristics of analog voltmeter/multimeter. |
| 2 | 1,2,4 | 1,4,5,7 | 1. Statistical analysis- arithmetic mean, deviation, average deviation, standard deviation, probability of errors and limiting errors.
2. Problems on Statistical analysis. | Refer Table 1 | 1. Identify the errors and do the calibration for setting up an analog multimeter before performing measurement. |
<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>3.</td>
<td>1, 2, 4</td>
<td>1, 4</td>
<td>1. Standards-primary, secondary, working and IEEE standards.</td>
<td>2. Troubleshoot and service the Digital trainer kits.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
<td>2. Bridges- Comparison of AC and DC bridges. Applications of AC and DC bridges.</td>
<td>Refer Table 1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3. Wheatstone bridge-Explanation and applications.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>2, 3</td>
<td>1, 2, 3, 4, 6</td>
<td>1. Electrical Transducers- necessity, selection, classification- active and passive, analog and digital, primary and secondary.</td>
<td>1. Build a Wheatstone bridge to find unknown resistance.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2. Strain gauge-principle, gauge factor, features of bonded, unbonded, foil type strain gauges.</td>
<td>Refer Table 1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3. Load Cell, capacitive transducer-principle & features.</td>
<td>2. Construct a circuit to measure AC voltage by voltage divider method.</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>2, 3</td>
<td>3, 4, 5, 7</td>
<td>1. Hall effect transducers, LVDT, thermistor.</td>
<td>1. Video demonstration and documentation on multi-function meter used for measuring any electrical parameter.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2. Thermocouple, piezoelectric transducers, position sensors.</td>
<td>Refer Table 1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3. Proximity sensors, digital optical encoders & PIR sensors.</td>
<td>2. Calibrate a load cell to measure the weight of any object. Use suitable components and/or programming to accomplish the task.</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>1, 2</td>
<td>1, 4, 7</td>
<td>1. PMMC meters- principle, DC ammeters and multi range ammeters.</td>
<td>1. Construct a circuit to verify KVL and measure voltages using analog voltmeter.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2. DC voltmeters using PMMC, multi range voltmeters, loading effect and voltmeter sensitivity.</td>
<td>Refer Table 1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3. Electrodynamometer-principle, ammeter, voltmeter.</td>
<td>2. Construct a circuit to verify KCL and measure currents using analog ammeter.</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>1, 2</td>
<td>1, 4, 5, 7</td>
<td>1. Electronic voltmeter- Chopper amplifier type voltmeter.</td>
<td>1. Study of Regulated DC power supply and measurement of standard voltages at various stages of RPS.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2. AC voltmeter- full-wave rectifier, Peak responding and true RMS voltmeters.</td>
<td>Refer Table 1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3. Ohmmeters- series and shunt type, concept of calibration of meters.</td>
<td>2. Identify and rectify the various faults in the Regulated DC power supply.</td>
<td></td>
</tr>
<tr>
<td>Unit</td>
<td>Lessons</td>
<td>Textual Content</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>---------</td>
<td>----------------</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| **8** | 1, 4 | 1. Digital instruments – Introduction, Ramp type DVM.
2. Automatization in digital meters - automatic polarity indication, automatic decimal point positioning, automatic ranging and zeroing.
Refer Table 1 | 1. Video demonstration and documentation on testing life cycle of electrical loads using Electronic Counter.
2. Troubleshoot and perform minor repair practices on Decade Boxes (Rotary switches, connectors, components connectivity etc).
Refer Table 1 |
| **9** | 1, 2, 4, 5, 6 | 1. Digital frequency meter, Time interval measurement.
2. Digital LCR meter, digital multimeter.
Refer Table 1 | 1. Calibrate LCR meter and perform measurement of Resistance, capacitance, and inductance and verify with actual value.
2. Troubleshoot and rectify any analog circuit using simulation software (Multisim)
Refer Table 1 |
| **10** | 1, 2, 4, 5, 6 | 1. Cathode Ray Oscilloscope - block diagram, working of CRT.
2. Dual trace CRO, CRO probes, applications of CRO.
3. DSO - block diagram, features, Sampling oscilloscope.
Refer Table 1 | 1. Study the front panel controls of CRO and do its calibration
2. Demonstrate the use of CRO to measure phase difference between two waveforms and obtain the lissajous patterns.
Refer Table 1 |
| **11** | 1, 2, 4, 7 | 1. Function generator - block diagram and applications.
2. Standard RF signal generator, sweep frequency generator.
3. Harmonic distortion, harmonic analyzing instruments.
Refer Table 1 | 1. Demonstrate the analysis of different waveforms (amplitude, phase, frequency) from a function generator using CRO.
2. Demonstration and documentation on the working of a spectrum analyser. (Video/simulator)
Refer Table 1 |
| **12** | 1, 4, 5, 7 | 1. Electrical grounding and shielding concept, interference, shielding of cabinets.
2. Precautions to prevent instrument damage, general precautions for instrument safety.
Refer Table 1 | 1. Do it yourself (DIY) a probe and use the probe to test the circuit continuity in PCB.
Refer Table 1 |
1. Precautions to be taken to achieve personnel safety during servicing.
3. Explain Basic steps of electronic equipment service and maintenance.
 a) Study of basic procedure of service and maintenance
 b) Circuit tracing techniques

Refer Table 1

1. Do it yourself (DIY) an antistatic wrist strap useful to handle electronic component.

Total in hours

<table>
<thead>
<tr>
<th>Week No.</th>
<th>Suggested activities for tutorials</th>
</tr>
</thead>
</table>
| 01 | 1. Give a presentation on ways of reducing systematic and random errors.
 | 2. List the basic tools (electronic repair tools) required for servicing electronic equipment and their purpose. |
| 02 | 1. Present the specification sheets of voltmeter/ammeter/ohmmeter.
 | 2. Demonstrate the procedure to calibrate DC power supply. |
| 03 | 1. Identify the faults in Digital ICs and Troubleshoot using digital IC tester/ Logic Probe
 | 2. Prepare a report on IEEE standards. |
| 04 | 1. Give a presentation on applications of strain gauge and explain any one.
 | 2. Prepare a report on advantages and disadvantages of capacitive transducers. |
| 05 | 1. Write a report on various kinds of transducers used in Biomedical Instrumentation.
 | 2. Demonstrate the application of any sensor. |

Note: 1) In Practice sessions Video demonstration should be followed by MCQs/Quiz/Subjective questions and the evaluation has to be documented.
2) In Practice sessions, all discrete circuits should be simulated using suitable software before its construction and verification.

TABLE 1: Suggested activities for tutorials
The list is shared as an example and not inclusive of all possible activities of the course.
The list of activities for one week can be shared among teams in a batch of students.
| 06 | 1. Give a presentation on KVL and KCL and use of voltmeter and ammeter in taking readings.
2. Solve problems on extending range in ammeter and voltmeter. |
| 07 | 1. Give a presentation on comparison of commercially available electronic voltmeters.
2. Prepare a report on calibration of meters. |
| 08 | 1. Discuss pros and cons of Digital instruments.
2. Prepare a report on comparison of analog and digital instruments. |
| 09 | 1. Give a presentation on performance testing on digital multimeters.
2. Collect and present service manuals of measuring instruments.
3. Present the applications of IEEE 488 GPIB instruments. |
| 10 | 1. Give a presentation on applications of CRO.
2. Give a presentation on the Technical specification of CRO.
3. Collect and present the specifications of DSO. |
| 11 | 1. Suggest cost-quality effective of any 4 measuring instruments by preparing comparative statements containing function, specification, make, market-price, and warranty
2. Collect and present the specifications of signal generator. |
| 12 | 1. Prepare a report on the grounding and shielding of any lab equipment (ex. oscilloscope). Also present the consequences if not done so.
2. Do minor repair practices on Decade Boxes (Rotary switches, connectors, components connectivity etc.,) |
| 13 | 1. Study the latest technological changes in this course and present the impact of these changes on industry.
2. Discuss about Trouble shooting chart. |

LINKS

1. https://www.webassign.net/labsgraceperiod/ncsuplseem2/lab_1/manual.html
2. https://youtu.be/i4sI dBWH50
3. https://blog.matric.com/pcb-testing-methods
4. https://www.youtube.com/watch?v=AUTcWsR6pwU
5. https://www.youtube.com/watch?v=x4B6 1C4gEQ
6. https://www.youtube.com/watch?v=-0Pre73mp7A
7. https://www.youtube.com/watch?v=JgyCMd5nMw4
8. https://www.youtube.com/watch?v=Evw5AqUYkg
9. https://www.youtube.com/watch?v=yasajLIUYvg
4. CIE and SEE Assessment Methodologies

<table>
<thead>
<tr>
<th>Sl. No</th>
<th>Assessment</th>
<th>Test Week</th>
<th>Duration In minutes</th>
<th>Max marks</th>
<th>Conversion</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>CIE-1 Written Test</td>
<td>5</td>
<td>80</td>
<td>30</td>
<td>Average of three tests</td>
</tr>
<tr>
<td>2.</td>
<td>CIE-2 Written Test</td>
<td>9</td>
<td>80</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td>CIE-3 Written Test</td>
<td>13</td>
<td>80</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td>CIE-4 Skill Test-Practice</td>
<td>6</td>
<td>180</td>
<td>100</td>
<td>Average of two skill tests</td>
</tr>
<tr>
<td>5.</td>
<td>CIE-5 Skill Test-Practice</td>
<td>12</td>
<td>180</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>6.</td>
<td>CIE-6 Portfolio continuous evaluation of Activity through Rubrics</td>
<td>1-13</td>
<td>10</td>
<td>10</td>
<td></td>
</tr>
</tbody>
</table>

Total CIE Marks 60

Semester End Examination (Practice) 180 100 40

Total Marks 100

5. Format for CIE (1, 2, 3) Written Test

<table>
<thead>
<tr>
<th>Course Name</th>
<th>Test</th>
<th>I/II/III</th>
<th>Sem</th>
<th>III/IV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electronics Measurement and Testing</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Techniques</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Course Code</td>
<td>20EC34P</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Duration</td>
<td>80 Min</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: Answer any one full question from each section. Each full question carries 10 marks.

<table>
<thead>
<tr>
<th>Section</th>
<th>Assessment Questions</th>
<th>Cognitive Levels</th>
<th>Course Outcome</th>
<th>Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>II</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>III</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note for the Course coordinator: Each question may have one, two or three subdivisions. Optional Questions in each section carry the same weightage of marks, Cognitive level and course outcomes.

5. (a) Format for CIE-4 Skill Test - Practice

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>COs</th>
<th>Particulars/Dimension</th>
<th>Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>Conduct an experiment on characteristics/Calibration/Bridge Writing circuit</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Conduction</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Result</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>Conduct an experiment on Sensor/Transducer</td>
<td>40</td>
</tr>
<tr>
<td>3</td>
<td>1,3</td>
<td>Portfolio evaluation of Practice sessions through Rubrics</td>
<td>10</td>
</tr>
</tbody>
</table>

Total Marks 100
5. (b) Format for CIE-5 Skill Test - Practice

<table>
<thead>
<tr>
<th>SL. No.</th>
<th>COs</th>
<th>Particulars/Dimension</th>
<th>Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>Conduct experiment on CRO/ Measurement of L C R</td>
<td>40</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>Conduct an experiment on Troubleshooting RPS/ Repair of Decade Boxes</td>
<td>50</td>
</tr>
<tr>
<td>3</td>
<td>2,4</td>
<td>Portfolio evaluation of Practice sessions through Rubrics</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Total Marks</td>
<td>100</td>
</tr>
</tbody>
</table>

6. Rubrics for Assessment of Activity (Qualitative Assessment)

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>Dimension</th>
<th>Beginner</th>
<th>Intermediate</th>
<th>Good</th>
<th>Advanced</th>
<th>Expert</th>
<th>Students Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>Descriptor</td>
<td>Descriptor</td>
<td>Descriptor</td>
<td>Descriptor</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>Descriptor</td>
<td>Descriptor</td>
<td>Descriptor</td>
<td>Descriptor</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>Descriptor</td>
<td>Descriptor</td>
<td>Descriptor</td>
<td>Descriptor</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>Descriptor</td>
<td>Descriptor</td>
<td>Descriptor</td>
<td>Descriptor</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

Average Marks = (8+6+2+2)/4 = 4.5

Note: Dimension and Descriptor shall be defined by the respective course coordinator as per the activities.

7. Reference:

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>Description</th>
</tr>
</thead>
</table>

8. SEE Scheme of Evaluation

<table>
<thead>
<tr>
<th>SL. No.</th>
<th>COs</th>
<th>Particulars/Dimension</th>
<th>Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1,2</td>
<td>Identify errors, calibrate and perform measurement using analog multimeter/Wheatstone bridge/LCR meter/CRO</td>
<td>30</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>Identify the Sensor/Transducer used in different applications.</td>
<td>10</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>Conduct an experiment on Troubleshooting and repair of DTK/ RPS/ Decade Boxes</td>
<td>40</td>
</tr>
<tr>
<td>4</td>
<td>1,2,3,4</td>
<td>Viva-Voce</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Total Marks</td>
<td>100</td>
</tr>
</tbody>
</table>
9. Equipment/software list with Specification for a batch of 20 students

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>Particulars</th>
<th>Specification</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Computers</td>
<td>Intel Core i5 11th gen/8GB RAM/1 TB HDD/256GB SSD/Graphics 2 GB</td>
<td>20</td>
</tr>
<tr>
<td>2</td>
<td>MATLAB/Multisim/PSPICE/Electronic Workbench Simulation Software</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Dual trace oscilloscope</td>
<td>20-30MHz</td>
<td>20</td>
</tr>
<tr>
<td>4</td>
<td>LCR meter</td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>5</td>
<td>Multi function meter</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>Resistors, Capacitors, Inductors, Thermistor</td>
<td>Consumables as required</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Digital multimeter</td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>8</td>
<td>Analog multimeter</td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>9</td>
<td>Function generator</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>10</td>
<td>Position, and Proximity sensors</td>
<td></td>
<td>10 each</td>
</tr>
<tr>
<td>11</td>
<td>Transducer</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>12</td>
<td>Load cell</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>13</td>
<td>Tool kit</td>
<td></td>
<td>2 sets</td>
</tr>
<tr>
<td>14</td>
<td>Soldering set</td>
<td></td>
<td>10 sets</td>
</tr>
<tr>
<td>Course Code</td>
<td>20KA31T</td>
<td>Semester: III</td>
<td>Course Group - AU</td>
</tr>
<tr>
<td>-------------</td>
<td>---------</td>
<td>---------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>Course Title</td>
<td>ಮಹಾಯಾಣ - 2</td>
<td>Category: Audit</td>
<td>Lecture Course</td>
</tr>
<tr>
<td>No. of Credits</td>
<td>2</td>
<td>Type of Course</td>
<td>CIE Marks: 50</td>
</tr>
<tr>
<td>Total Contact Hours</td>
<td>02 Hrs Per Week 26 Hrs Per Semester</td>
<td>Prerequisites Teaching Scheme (L:T:P) = 2:0:0</td>
<td>SEE Marks: Nil</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ವಿಷಯಗಳ ವಿವರಣೆ</th>
<th>ಪ್ರವೇಶ ಪೋಷಕ ವಿಷಯಗಳು</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. ಕೇಂದ್ರಭೇದ ಮಹಾಯಾಣ, ನೈಸರ್ಗಿಕ ಕಾಲೇಖನಿ -</td>
<td>01 ರಾಜಿ</td>
</tr>
<tr>
<td>2. ಕೇಂದ್ರಭೇದ ಮಹಾಯಾಣ, ನೈಸರ್ಗಿಕ ಕಾಲೇಖನಿ -</td>
<td>02 ರಾಜಿ</td>
</tr>
<tr>
<td>• ಪಾಲಯದ ಮಹಾಯಾಣ - ಉಷ್ಣಾಸ್ಥೀರ ಮಾಡೆ, ಸಾಮರ್ಥ್ಯ ನಿಸರ್ಗ ಮಾಡೆ, ಸಾಮರ್ಥ್ಯ ಹೆಣಸುವ ಮಾಡೆ ಇದೆ ಮಾಡುವ ವೇಳೆಯುಗ</td>
<td>03 ರಾಜಿ</td>
</tr>
<tr>
<td>• ಪಾಲಯದ ಮಹಾಯಾಣ - ಉಷ್ಣಾಸ್ಥೀರಭದ್ರ ಮಾಡೆ, ಸಾಮರ್ಥ್ಯ ನಿಸರ್ಗ ಮಾಡೆ, ಸಾಮರ್ಥ್ಯ ಹೆಣಸುವ ಮಾಡೆ ಇದೆ ಮಾಡುವ ವೇಳೆಯುಗ</td>
<td>03 ರಾಜಿ</td>
</tr>
<tr>
<td>• ಮಾಕಲಾಯ ನಾಟಕ ಮಹಾಯಾಣ - ಉಷ್ಣಾಸ್ಥೀರ ಮಾಡೆ, ಸಾಮರ್ಥ್ಯ ನಿಸರ್ಗ ಮಾಡೆ, ಸಾಮರ್ಥ್ಯ ಹೆಣಸುವ ಮಾಡೆ ಇದೆ ಮಾಡುವ ವೇಳೆಯುಗ</td>
<td>03 ರಾಜಿ</td>
</tr>
<tr>
<td>• ವಿಜಾನ ಮಹಾಯಾಣ, ನೈಸರ್ಗಿಕ ಕಾಲೇಖನಿ - ಕೋಶಾಂತರ ಮಾಡೆ, ಸಾಮರ್ಥ್ಯ ನಿಸರ್ಗ ಮಾಡೆ, ಸಾಮರ್ಥ್ಯ ಹೆಣಸುವ ಮಾಡೆ ಇದೆ ಮಾಡುವ ವೇಳೆಯುಗ</td>
<td>03 ರಾಜಿ</td>
</tr>
<tr>
<td>3. ಎಂದರೆದಿಬ್ಬೆ ಮಹಾಯಾಣ ಚಿತ್ರಾಭಿಯಾನ, - ಎಂಬ ಪ್ರಕಾರ</td>
<td>01 ರಾಜಿ</td>
</tr>
<tr>
<td>4. ಮಹಾಭಾರತ</td>
<td>01 ರಾಜಿ</td>
</tr>
<tr>
<td>5. ಹುಟ್ಟು ಸಂಸ್ಥೆ - ಕಾಲೇಖನಿಯ ಕೆಲಸಗಳು (ಕುಲಕುಟುಂಬ, ವಿಚಾರ ಕೆಲಸಗಳು)</td>
<td>01 ರಾಜಿ</td>
</tr>
<tr>
<td>6. ಪಾಲಯದ, ಸಾಮರ್ಥ್ಯದ ನಾಟಕ ಕಾಲೇಖನಿ</td>
<td>01 ರಾಜಿ</td>
</tr>
<tr>
<td>7. ಮಾಕಲಾಯ - ಮಾಕಲಾಯದ ನಾಟಕ ಕಾಲೇಖನಿ</td>
<td>01 ರಾಜಿ</td>
</tr>
<tr>
<td>8. ಮಹಾಯಾಣ ಪ್ರಕಾರ, ನಾಟಕ ಕಾಲೇಖನಿ ಚಿತ್ರಾಭಿಯಾನ - ಸಂಸ್ಕೃತ ಪ್ರಕಾರ, ನಾಟಕ</td>
<td>01 ರಾಜಿ</td>
</tr>
<tr>
<td>9. ಮಹಾಯಾಣದ ಪ್ರಕಾರ - ಗುಂಪಿ, ಸ. ನಾಟಕಾಭಿವ್ಯಕ್ತಿ</td>
<td>01 ರಾಜಿ</td>
</tr>
<tr>
<td>10. ಮಹಾಯಾಣದ ಪ್ರಕಾರ - ಮಹಾಯಾಣದ ಪ್ರಕಾರ ಮೂಲಕ, ಸಾಮರ್ಥ್ಯ ನಿಸರ್ಗದ ಪ್ರಕಾರ</td>
<td>01 ರಾಜಿ</td>
</tr>
<tr>
<td>11. ಮಹಾಭಾರತದ ಸಂಸ್ಖ್ಯೆ ಹಾಗು ಕಾಲೇಖನಿ (ಅರುಡಕ್ಕೆ ನಾಟಕಾಭಿವ್ಯಕ್ತಿ)</td>
<td>01 ರಾಜಿ</td>
</tr>
<tr>
<td>12. ಮಹಾಯಾಣದ ಪ್ರಕಾರ, ಪ್ರಕಾರ ಹಾಗು ಸಂಸ್ಖ್ಯೆ</td>
<td>02 ರಾಜಿ</td>
</tr>
</tbody>
</table>

ಅಂದರೆ 26 ರಾಜಿಗಳಿಗೆ 26 ರಾಜಿಗಳಿಗೆ
<table>
<thead>
<tr>
<th>Part</th>
<th>Lesson Details</th>
<th>Teaching Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Part - I</td>
<td>Necessity of learning a local language (Continuation).</td>
<td>01 Hour</td>
</tr>
<tr>
<td></td>
<td>Tips to learn the language with easy methods (Continuation).</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Easy learning of a Kannada Language: A few tips (Continuation).</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hints for correct and polite conversation (Continuation).</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Instructions to Teachers for Listening and Speaking Activities (Continuation).</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Instructions to Teachers for Reading and Writing Activities (Continuation).</td>
<td></td>
</tr>
<tr>
<td>Part - II</td>
<td>Key to Transcription for Correct Pronunciation of Kannada Language (Continuation).</td>
<td>02 Hour</td>
</tr>
<tr>
<td></td>
<td>Instructions to Teachers to teach Kannada Language (Continuation).</td>
<td></td>
</tr>
<tr>
<td>Part - III</td>
<td>Lessons to teach Kannada Language (Speaking, Listening, Reading and Writing Activities with Explanation)</td>
<td></td>
</tr>
<tr>
<td>Lesson - 1</td>
<td>Personal Pronouns, Possessive Forms, Interrogative words – Part II</td>
<td>02 Hour</td>
</tr>
<tr>
<td>Lesson - 2</td>
<td>Permission, Commands, encouraging and Urging words (Imperative words and sentences) – Part II</td>
<td>02 Hour</td>
</tr>
<tr>
<td>Lesson - 3</td>
<td>Comparative, Relationship, Identification and Negation Words – Part II</td>
<td>02 Hour</td>
</tr>
<tr>
<td>Lesson - 4</td>
<td>Different types of forms of Tense (Use and Usage of Tense in Kannada) – Part II</td>
<td>02 Hour</td>
</tr>
<tr>
<td>Lesson - 5</td>
<td>Kannada Helping Verbs in Conversation (Use and Usage of Verbs) – Part II</td>
<td>02 Hour</td>
</tr>
<tr>
<td>Lesson - 6</td>
<td>Formation of Past, Future and Present Tense Sentences with Changing Verb Forms</td>
<td>02 Hour</td>
</tr>
<tr>
<td>Lesson - 7</td>
<td>Karnataka State and General Information about the State</td>
<td>02 Hour</td>
</tr>
<tr>
<td>Lesson - 8</td>
<td>Kannada Language and Literature</td>
<td>02 Hour</td>
</tr>
<tr>
<td>Lesson - 9</td>
<td>Do's and Don'ts in Learning a Language</td>
<td>02 Hour</td>
</tr>
<tr>
<td>PART - IV</td>
<td>Reading and writing Practice of Kannada Language</td>
<td></td>
</tr>
<tr>
<td>Lesson - 10</td>
<td>Kannada Language Script Part – I</td>
<td>02 Hour</td>
</tr>
<tr>
<td>Lesson - 11</td>
<td>Kannada Language Script Part – II (Continuation)</td>
<td>02 Hour</td>
</tr>
<tr>
<td>Lesson - 12</td>
<td>Kannada Vocabulary List: Kannada Words in Conversation (Continuation).</td>
<td>01 Hour</td>
</tr>
</tbody>
</table>

Total Teaching Hours: 26 Hour
(Course Assessment and Evaluation Chart - CIE only)

<table>
<thead>
<tr>
<th>Sl. No</th>
<th>Assessment</th>
<th>Type</th>
<th>Time frame in semester</th>
<th>Duration In minutes</th>
<th>Max marks</th>
<th>Conversion</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>CIE- Assessment - 1</td>
<td>Written Test - 1</td>
<td>At the end of 3rd week</td>
<td>80</td>
<td>30</td>
<td>Average of three written tests : 1, 2 & 3 for 30 Marks</td>
</tr>
<tr>
<td>2.</td>
<td>CIE- Assessment - 2</td>
<td>Written Test - 2</td>
<td>At the end of 7th week</td>
<td>80</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>CIE- Assessment - 3</td>
<td>Written Test - 3</td>
<td>At the end of 13th week</td>
<td>80</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td>CIE- Assessment - 4</td>
<td>MCQ/Quiz</td>
<td>At the end of 5th week</td>
<td>60</td>
<td>20</td>
<td>Average of three Assessment tests : 4, 5 & 6 for 20 Marks</td>
</tr>
<tr>
<td>5</td>
<td>CIE- Assessment - 5</td>
<td>Open Book Test</td>
<td>At the end of 9th week</td>
<td>60</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>CIE- Assessment - 6</td>
<td>Work book Consolidation & Activities</td>
<td>At the end of 11th week</td>
<td>60 (Work book Submission)</td>
<td>20</td>
<td></td>
</tr>
</tbody>
</table>

Total CIE – Continuous Internal Evaluation Assessment Marks 50

Total Marks 50

नोंद : 1. CIE - कॉर्स अध्येता निर्देशितप्रणिती 1, 2 रङ्ग (3 रङ्ग) निर्देशितप्रणिती कॉर्स निर्देशितप्रणिती 4, 5 रङ्ग 6 रङ्ग अक्रमान्तर अध्येता अपूर्ण अवस्था, निर्देशितप्रणिती के रूप में मुख्यतः
2. CIE- Assessment – 6 रङ्ग निर्देशितप्रणिती अक्रमान्तर अध्येता अपूर्ण अवस्था, निर्देशितप्रणिती के रूप में मुख्यतः

Department of Collegiate and Technical Education, Government of Karnataka
4TH SEMESTER
1. Rationale

Printed Circuit Boards (PCBs) are the core component in almost all the electronic gadgets used either for domestic or industrial purposes. PCBs hold almost all electronic components necessary for a device to function. Using a PCB has many advantages such as compact design, ease of testing and repair, low noise and interference, and improved reliability. Apart from electrically connecting, it also gives mechanical support to the electrical components. Using PCBs, a highly complicated circuit can be designed in a very small package which helps in reducing the size of electronic devices.

PCB design can be done either manually or using software. Electronic design automation tools are software tools used for designing the schematic and layout of PCB. Large number of PCBs can be fabricated at the same time after the layout is designed once. With consumers pushing for slimmer and faster devices, and with industries seeking improved functionality, the PCB will continue to develop in the future.

2. Course Outcomes: On successful completion of the course, the students will be able to:

<table>
<thead>
<tr>
<th>CO-1</th>
<th>Identify different types of Printed Circuit Board (PCB), list the differences between them and its adequacy for specific application.</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO-2</td>
<td>Draw the schematic and PCB layout for an analog circuit to be used for a given application.</td>
</tr>
<tr>
<td>CO-3</td>
<td>Select the right components for a designed circuit, build the circuit and fabricate it using the appropriate tools following all necessary safety protocols.</td>
</tr>
<tr>
<td>CO-4</td>
<td>Test the fabricated circuit, identify the problem and troubleshoot to ensure the circuit provides the desired output.</td>
</tr>
</tbody>
</table>
3. Course Content

<table>
<thead>
<tr>
<th>Week</th>
<th>CO</th>
<th>PO</th>
<th>Lecture (Knowledge Criteria)</th>
<th>Tutorial (Activity Criteria)</th>
<th>Practice (Performance Criteria)</th>
</tr>
</thead>
</table>
| 1 | 1 | 1 | 1. Introduction to PCB, need and evolution of PCBs.
2. Classes of PCB – First Class (RF, microwave, and analog PCB) & Second Class (digital based PCB) – characteristics.
3. Types of PCB - Single sided, double sided and multilayer PCBs, rigid and flexible PCBs. | Refer Table 1 | 1. Familiarization of any Electronic design automation (EDA) software - Open source EDA Tool KiCad.
2. Practice the PCB design steps for a simple analog circuit: Schematic design - Familiarization of schematic editor, schematic creation, annotation, electrical rule check, mapping of components, netlist generation. |
| 2 | 1,2| 1 | 1. Comparison between single layer, double layer and multilayer PCBs.
2. Importance of grounding in PCBs, impedance matching, reflection, ground bounce, SSN.
3. Materials used for multilayer PCBs, PCB thickness, aspect ratio. | Refer Table 1 | 1. Practice placement of components.
2. Practice the routing (normal tracks -10 mils and power tracks-50 mils). |
| 3 | 1,2| 1,2| 1. Component package types - Through-Hole, Surface-Mount, Fine Pitch, FPGA, QFT, TFP, BGA, Press Fit.
2. Calculation of track width required for different types of packages.
3. Types of Planes in PCB. | Refer Table 1 | 1. Learn how to create symbols for diodes, transistors, connectors, ICs.
2. Create the footprint for diodes, transistors, connectors, ICs. |
| 4 | 2 | 2,3,4| 1. Design for manufacturability (DFM).
2. Electromagnetic Interference (EMI), Electromagnetic Compatibility (EMC).
3. Thermal issues in PCB | Refer Table 1 | 1. Design Schematic for Regulated Power supply.
2. Design PCB layout for Regulated Power supply. |
| 5 | 2 | 2,3,4 | 1. Conduction, convection, radiation in thermal issues.
3. RF PCB-introduction. | Refer Table 1 | 1. Design Schematic for inverting /summing amplifier using op-amp.
2. Design PCB layout for inverting /summing amplifier using op-amp. |
|---|---|---|---|---|---|
| 6 | 2 | 2,3,4 | 1. High-speed digital basics.
2. General design factor for digital and analog PCBs.
3. Voltage and current considerations in PCBs. | Refer Table 1 | 1. Design Schematic for astable multivibrator using IC 555.
2. Design PCB layout for astable multivibrator using IC 555. |
| 7 | 2 | 2,3,4 | 1. Transmission lines, significance of transmission line and its effects.
2. Types of Transmission lines.
3. Different types of termination techniques, simple problems. | Refer Table 1 | 1. Design Schematic for RC coupled amplifier.
2. Design PCB layout for RC coupled amplifier. |
| 8 | 2 | 2,3,4 | 1. Crosstalk in transmission lines, minimization of crosstalk.
2. ENIG and ENEPIG.
3. Noise budget. | Refer Table 1 | 1. Design Schematic for a given circuit (Ex: proximity sensor/LED blinking/+ or -12v power supply using 7812 IC and 7912 IC)
2. Design PCB layout for a given ckt (Ex: proximity sensor/LED blinking circuit/+or -12v power supply using 7812 and 7912 IC) |
| 9 | 2,3 | 3,4,5 | 1. Preparation of Manufacturing Drawing (MD).
2. Importance of Solder mask, assembly drawing, silkscreen, Gerber file.
3. Board origin, component origin, importance of origin. | Refer Table 1 | 1. Familiarisation of copper clad sheet, drilling machine, drill bits, required chemicals (links)
2. Generate the Gerber file of works done in weeks 4 - 8 and take printouts on glossy paper. |
TABLE 1: Suggested activities for tutorials.

The list is shared as an example and not inclusive of all possible activities of the course. The list of activities for one week can be shared among teams in a batch of students.

<table>
<thead>
<tr>
<th>Week no.</th>
<th>Suggested activities for tutorials</th>
</tr>
</thead>
</table>
| 01 | 1. Prepare a report on reference designators for components used in PCB.
 | 2. Give a presentation on general guidelines for designing the PCB.
<pre><code> | 3. Prepare a report on comparison of different types of PCBs. |
</code></pre>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
</table>
| **02** | 1. Collect information on different electronic design automation (EDA) tools and their comparison (Cadstar, Orcad, Pads).
| | 2. Collect the information on materials used for multilayer PCB, drill holes, vias, aspect ratio and present it. |
| **03** | 1. Collect the datasheets of electronic components such as diode, regulator IC, DIP IC and study their mechanical dimension and their projection (first angle/ third angle projection, top view, front view).
| | 2. Give a presentation on through-hole and surface-mount technology. |
| **04** | 1. Collect a case study on DFM issues and present it.
| | 2. Give a presentation on Electromagnetic Interference in real life and provide solution to solve the problem. |
| **05** | 1. Collect details of different types of heat sinks used in PCBs.
| | 2. Collect any frequency synthesizer circuit and explain it. |
| **06** | 1. Prepare a report on comparison of analog and digital PCBs and present it.
| | 2. Give a presentation on the importance of spacing and thickness of the tracks in PCB’s. |
| **07** | 1. Give a presentation on the importance of transmission lines.
| | 2. Discuss selection of transmission lines for optimum design. |
| **08** | 1. Write a report on how to analyse the presence of crosstalk in signals.
| | 2. Give a presentation on advantages and disadvantages of ENIG and ENEPIG. |
| **09** | 1. Collect information on different types of solder paste.
| | 2. Collect any completed PCB file and explain it. |
| **10** | 1. Prepare a report on comparison of manual soldering and machine soldering and present it.
| | 2. Collect information on design standards used in India for designing PCBs. |
| **11** | 1. Collect different types of manufacturing techniques and explain them.
| | 2. What are the different parameters to be considered to decide the cost of manufactured PCB? |
| **12** | 1. Give a presentation on the failures of PCB due to improper soldering.
| | 2. Write a report on testing of PCB. |
1. Study the latest technological changes in this course and present the impact of these changes on industry.

2. Give a presentation on the role of students for protecting environment from hazardous materials.

3. Find different methods for disposing of PCB lab wastes and dispose it.

4. **CIE and SEE Assessment Methodologies**

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>Assessment</th>
<th>Test Week</th>
<th>Duration in minutes</th>
<th>Max marks</th>
<th>Conversion</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>CIE-1 Written Test</td>
<td>5</td>
<td>80</td>
<td>30</td>
<td>Average of three tests</td>
</tr>
<tr>
<td>2.</td>
<td>CIE-2 Written Test</td>
<td>9</td>
<td>80</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>CIE-3 Written Test</td>
<td>13</td>
<td>80</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td>CIE-4 Skill Test-Practice</td>
<td>6</td>
<td>180</td>
<td>100</td>
<td>Average of two skill tests</td>
</tr>
<tr>
<td>5</td>
<td>CIE-5 Skill Test-Practice</td>
<td>12</td>
<td>180</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>CIE-6 Portfolio continuous evaluation of Activity through Rubrics</td>
<td>1-13</td>
<td>180</td>
<td>10</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SL. No.</th>
<th>COs</th>
<th>Particulars/Dimension</th>
<th>Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>Identification of different types of PCB.</td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>Schematic Design of the given Analog Circuit using EDA tool (KiCad)</td>
<td>40</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>Layout Design of the given Analog Circuit using EDA tool (KiCad)</td>
<td>40</td>
</tr>
<tr>
<td>4</td>
<td>1,2</td>
<td>Portfolio evaluation of Practice sessions through Rubrics</td>
<td>10</td>
</tr>
</tbody>
</table>
5. (b) Format for CIE-5 Skill Test - Practice.

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>COs</th>
<th>Particulars/Dimension</th>
<th>Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>Design of the given Analog Circuit</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Schematic Design</td>
<td>-5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Layout Design</td>
<td>-5</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>Fabrication of the given Analog Circuit</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fabrication</td>
<td>-30</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Component mounting & soldering</td>
<td>-20</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>Testing & Troubleshooting of a given PCB</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Testing</td>
<td>-10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Troubleshooting</td>
<td>-20</td>
</tr>
<tr>
<td>4</td>
<td>2,3,4</td>
<td>Portfolio evaluation of Practice sessions through Rubrics</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Total Marks</td>
<td>100</td>
</tr>
</tbody>
</table>

6. Rubrics for Assessment of Activity (Qualitative Assessment)

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>Dimension</th>
<th>Beginner</th>
<th>Intermediate</th>
<th>Good</th>
<th>Advanced</th>
<th>Expert</th>
<th>Students Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>2</td>
<td>4</td>
<td>6</td>
<td>8</td>
<td>10</td>
<td>8</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>Descriptor</td>
<td>Descriptor</td>
<td>Descriptor</td>
<td>Descriptor</td>
<td>Descriptor</td>
<td>6</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>Descriptor</td>
<td>Descriptor</td>
<td>Descriptor</td>
<td>Descriptor</td>
<td>Descriptor</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>Descriptor</td>
<td>Descriptor</td>
<td>Descriptor</td>
<td>Descriptor</td>
<td>Descriptor</td>
<td>2</td>
</tr>
</tbody>
</table>

Average Marks = (8+6+2+2)/4 = 4.5

Note: Dimension and Descriptor shall be defined by the respective course coordinator as per the activities

7. Reference:

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>PCB Design & Technology - Walter C. Bosshart</td>
</tr>
<tr>
<td>3</td>
<td>Printed Circuit Board by RS Khandpur, Tata McGraw Hill Education Pvt Ltd., New Delhi</td>
</tr>
<tr>
<td>4</td>
<td>Electronic Product Design Volume-I by S D Mehta, S Chand Publications</td>
</tr>
<tr>
<td>5</td>
<td>Open source EDA Tool KiCad Tutorial: http://kicad-pcb.org/help/tutorials/</td>
</tr>
<tr>
<td>6</td>
<td>PCB Fabrication user guide page: http://www.wikihow.com/Create-Printed-Circuit-Boards</td>
</tr>
<tr>
<td></td>
<td>http://reprap.org/wiki/MakePCBInstructions#Making PCBs yourself</td>
</tr>
</tbody>
</table>
8. SEE Scheme of Evaluation

<table>
<thead>
<tr>
<th>SL. No.</th>
<th>COs</th>
<th>Particulars/Dimension</th>
<th>Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>Identification of Types of PCB.</td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>Design of the given Analog Circuit
Schematic Design</td>
<td>-15 Marks</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Layout Design</td>
<td>-15 Marks</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Routing</td>
<td>-10 Marks</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>Fabrication of the given Analog Circuit
Fabrication</td>
<td>-10 Marks</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Component mounting & soldering</td>
<td>-10 Marks</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>Testing & Troubleshooting of PCB.</td>
<td>10</td>
</tr>
<tr>
<td>5</td>
<td>1,2,3, 4</td>
<td>Viva Voce</td>
<td>20</td>
</tr>
</tbody>
</table>

Total Marks 100

9. Equipment/software list with Specification for a batch of 20 students

<table>
<thead>
<tr>
<th>SL. No.</th>
<th>Particulars</th>
<th>Specification</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Computers</td>
<td>Intel Core i5 11th gen/8GB RAM/1 TB HDD/256GB SSD/Graphics 2 GB</td>
<td>20</td>
</tr>
<tr>
<td>2</td>
<td>Open source EDA Tool KiCad.</td>
<td></td>
<td>20</td>
</tr>
<tr>
<td>3</td>
<td>Single-sided copper clad sheet.</td>
<td></td>
<td>100</td>
</tr>
<tr>
<td>4</td>
<td>Diluted Acidic solution for copper etching purpose with plastic tray.</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>5</td>
<td>Tapes and pads for layout design of different dimensions.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Glossy paper</td>
<td></td>
<td>60</td>
</tr>
<tr>
<td>7</td>
<td>Hand drilling/Power drilling machine.</td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>8</td>
<td>Tool kit (Tray, Brush, PCB Laminate, tong, hand gloves etc.)</td>
<td></td>
<td>20</td>
</tr>
</tbody>
</table>
1. Rationale
The purpose of wireless communication is to communicate messages over distances without the use of wires. It includes an exposure to microwave engineering, radar systems, cellular and satellite communication. In the microwave industry, job opportunities are available in assembly, production, installation, repair and maintenance of microwave transmitters and receivers. The knowledge of radar systems allows opportunities with civil and defence organizations dealing with aircraft and shipping. Satellite communication is used to relay signals around the curvature of Earth allowing communication between widely separated points. Mobile communication is a fast changing technology which offers voice and data connectivity between individuals.

2. Course Outcomes: On successful completion of the course, the students will be able to:

CO-1	Identify the types of wireless communications, list differences and its applications.
CO-2	Identify the components of a given wireless communication system, explain the role of those components in the system and list their characteristics.
CO-3	Build a working model of a wireless communication system to be used for a specific application.
CO-4	Test a given set top Box / mobile phone, identify the problem and troubleshoot to ensure the device is fully functional.

3. Course Content

<table>
<thead>
<tr>
<th>Week</th>
<th>CO</th>
<th>PO</th>
<th>Lecture (Knowledge Criteria)</th>
<th>Tutorial (Activity Criteria)</th>
<th>Practice (Performance Criteria)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1, 2, 3</td>
<td>1</td>
<td>1. Wireless communication – Concept, block diagram, types, frequency spectrum used in different wireless communication systems.
2. Wireless metropolitan area network (WMANs), Wireless local area networks (WLANs), Wireless personal area network – (WPANs)
3. Wi-Fi– Features and applications, significance of hotspot.</td>
<td>Refer Table 1</td>
<td>1. Implement WLAN in your computer lab.</td>
</tr>
</tbody>
</table>
| | | | 1. RFID- concept & applications.
2 Bluetooth – components, connections, networking & applications.
3. Waveguides- Need, types, applications. | 1. Conduct an experiment to connect PC to internet through bluetooth access point of mobile and transfer a text file/image file/video file.
2. Interface RFID reader for any application using Arduino controller. |
|---|---|---|---|
| 3 | 1,2, 3 | 1,5 | 1. Microwave signals, microwave devices –Two cavity klystron, Reflex klystron.
2. Magnetron and Travelling Wave Tube (TWT) and their applications.
3. RADAR- principle of operation and applications. | 1. Video demonstration & documentation on working of
a. Two cavity klystron.
b. Reflex klystron.
2. Video demonstration & documentation on working of
a. Magnetron.
b. TWT. |
| 4 | 1,2, 3 | 1,2 | 1. Radar range equation (no derivation) and factors influencing the radar range.
2. Pulsed radar system- principle and block diagram, Duplexer.
3. Antenna scanning and tracking. | 1. Study and measure the characteristics of pulse from signal generator using a CRO.
2. Conduct an experiment to use a smart phone as CCTV camera (or a CCTV camera) and connect it to another mobile to view the camera feed. |
| 5 | 1,2, 3 | 1,5 | 1. Special purpose Radars- doppler radar, MTI radar-block diagram and their applications.
2. Secondary surveillance radar & ILS.
3. ZigBee –architecture, network topologies, applications. | Refer Table 1
a. Video demonstration and documentation to understand radar scanning and tracking systems.
b. Video demonstration and documentation to understand the working of secondary surveillance radar.
2. Interface Zigbee module for any application using Arduino controller. |
| 6 | 1 | 1,5 | Satellite Communication
1. Satellite - Types, orbits. apogee and perigee, azimuth and elevation angles, sub satellite point, sub satellite paths, ascending and descending nodes.
2. Posigrade and Retrograde orbits, Uplink and downlink, orbital period and radius of geosynchronous satellite, satellite eclipse. Polar and Geostationary satellites - advantages and disadvantages.
3. LEO, MEO & GEO satellites, Station keeping, Attitude control and thermal control | 1. Study the features and working of different sections in a satellite communication trainer kit.
2. Conduct an experiment to Transmit & Receive three separate Signals (Audio, Video, and Tone/ Voice) simultaneously through satellite link and perform Link Fail Operations using satellite communication trainer kit. |
<table>
<thead>
<tr>
<th>Page</th>
<th>Column 1</th>
<th>Column 2</th>
<th>Column 3</th>
<th>Column 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>1, 2</td>
<td>1, 5</td>
<td>1. Satellite communication system - block diagram. Transponder - single conversion, double conversion and regenerative transponder. 2. Increasing channel capacity - frequency reuse and spatial isolation. Communication satellite - satellite subsystems. 3. Earth station- block diagram, Applications payload.</td>
<td>Refer Table 1</td>
</tr>
<tr>
<td>8</td>
<td>1, 2, 3</td>
<td>1, 5</td>
<td>1. Global Positioning System (GPS) - features, working. 2. Satellite for TV applications - Direct-To-Home (DTH) and cable TV. 3. Satellite for military applications, VSAT - features & applications.</td>
<td>Refer Table 1</td>
</tr>
<tr>
<td>9</td>
<td>1, 2, 3</td>
<td>1, 5, 7</td>
<td>1. Satellite for voice and data communication, Earth observation. 2. Set top box - concept, block diagram. 3. Set top box - working.</td>
<td>Refer Table 1</td>
</tr>
<tr>
<td>10</td>
<td>1, 2</td>
<td>1, 5</td>
<td>1. Cellular networks, cellular concept, frequency reuse. 2. Terminologies used in mobile communication. capacity expansion techniques-cell splitting and cell sectoring. 3. Handoff strategies. working of a typical cellular system.</td>
<td>Refer Table 1</td>
</tr>
<tr>
<td>11</td>
<td>3</td>
<td>7</td>
<td>1. GSM services and features. 2. GSM architecture, working. 3. LTE architecture and working.</td>
<td>Refer Table 1</td>
</tr>
<tr>
<td>12</td>
<td>1, 2, 4</td>
<td>7</td>
<td>Mobile servicing 1. Mobile displays – working principle.</td>
<td>Video demonstration and documentation of</td>
</tr>
</tbody>
</table>
3. Charging ports & battery - concept

Refer Table 1
1. Troubleshooting, testing and replacement of display, front camera.
2. Troubleshooting, testing and replacement of charging port, battery.

13
1, 2, 3
7
1. IoT – introduction, characteristics of IoT, internet of things.
2. IoT protocols-MQTT, IoT-functional blocks.
3. IoT communication models, IoT enabling technologies.

Refer Table 1
1. Build an IoT based simple real time application using Arduino controller and prepare a report.

Total in hours
39
13
52

Note: 1) In Practice sessions Video demonstration should be followed by MCQs/Quiz/Subjective questions and the evaluation has to be documented.

2) In Practice sessions, all circuits should be simulated using suitable software before its construction and verification.

TABLE 1: Suggested activities for tutorials
The list is shared as an example and not inclusive of all possible activities of the course.
The list of activities for one week can be shared among teams in a batch of students.

<table>
<thead>
<tr>
<th>Week no.</th>
<th>Suggested activities for tutorials</th>
</tr>
</thead>
</table>
| **01** | 1. Give a presentation on differences between wired and wireless communication.
 | 2. Demonstrate the implementation of Wi-Fi hotspot.
 | 3. Video demonstration & documentation of working of industrial wireless communication. |
| **02** | 1. Give a presentation on Bluetooth specification Standards (IEEE 802.15.1).
 | 2. Build a simple application using RFID.
 | 3. Analyse the CCTV setup in your department/college and troubleshoot the CCTV application if required and submit the report. |
| **03** | 1. Prepare a report on microwave devices- IMPATT & TRAPATT.
 | 2. Give a presentation on the working of any one type of waveguide. |
| 04 | 1. Give a presentation on any one application of a Radar system in daily life.
2. Give a presentation about the usage of the Radar technology in case of searching a crashed aircraft in the ocean.
3. Solve problems on radar range equation. |
| 05 | 1. Prepare and present a report on radar displays.
2. Give a presentation on aircraft landing systems (ILS).
3. Give a presentation on the design & performance analysis of the doppler radar system. |
| 06 | 1. Give a presentation on applications of LEO & MEO satellites.
2. Prepare a report on satellites launched by ISRO.
3. Give a presentation on differences between geostationary and geosynchronous satellite. List some examples of geostationary satellites. |
| 07 | 1. Present a report on satellite frequency allocation and satellite bandwidth.
2. Give a presentation on station keeping.
3. Give a presentation on the different types of antennas used in earth station, |
| 08 | 1. Prepare & present a report on GPS applications.
2. Prepare a report on DRONE, its working and various uses.
3. Prepare a report on different types of launch vehicles used for launching a satellite in India and its significance. |
| 09 | 1. Differences between cable box & set top box.
2. Compare the different set up boxes available in the market.
3. Prepare a report on the various experimentation and findings being conducted on the surface of MARS by NASA's Perseverance Rover (include actual pictures released from NASA website). |
| 10 | 1. Prepare a report on different generations of cellular networks.
2. Give a presentation on different mobile operating systems. |
| 11 | 1. Study of SIM card and its detection, SIM reset, SIM clock, SIM data, and SIM supply.
2. Give a presentation on CDMA system-services and features.
3. Give a presentation on LTE system services and features. |
| 12 | 1. Prepare a report on compatibility of mobile phone battery size and its heat dissipation.
2. Discuss the types and characteristics of antennas used in mobile phones. |
1. Study the latest technological changes in this course and present the impact of these changes on industry.

2. Demonstrate the importance of IoT based health monitoring system.

LINKS

1. https://youtu.be/Q97bVxd2r10
2. https://youtu.be/Fvud81pYG0g
4. https://youtu.be/4-wpM1z4ls
5. https://youtu.be/gzBPSG1b5uo
6. https://youtu.be/H00_PVX2bRw
7. https://youtu.be/wCcARVbLDk
9. [https://youtu.be/AiT36gdoSCc](https://youtu/be/AiT36gdoSCc)
10. https://youtu.be/oEa0Pfzl4C8
11. https://youtu.be/1IZG9x VOwA
12. https://youtu.be/IS8jmhVAfoQ
14. https://youtu.be/iQeaK0NGMnA
15. [www.ifixit.com- Repair guides-] select the particular model for ref.

4. CIE and SEE Assessment Methodologies

<table>
<thead>
<tr>
<th>Sl. No</th>
<th>Assessment</th>
<th>Test Week</th>
<th>Duration (In minutes)</th>
<th>Max marks</th>
<th>Conversion</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>CIE-1 Written Test</td>
<td>5</td>
<td>80</td>
<td>30</td>
<td>Average of three tests 30</td>
</tr>
<tr>
<td>2.</td>
<td>CIE-2 Written Test</td>
<td>9</td>
<td>80</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td>CIE-3 Written Test</td>
<td>13</td>
<td>80</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td>CIE-4 Skill Test-Practice</td>
<td>6</td>
<td>180</td>
<td>100</td>
<td>Average of two skill tests 20</td>
</tr>
<tr>
<td>5.</td>
<td>CIE-5 Skill Test-Practice</td>
<td>12</td>
<td>180</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>6.</td>
<td>CIE-6 Portfolio continuous evaluation of Activity through Rubrics</td>
<td>1-13</td>
<td>10</td>
<td>10</td>
<td></td>
</tr>
</tbody>
</table>

Total CIE Marks 60
Semester End Examination (Practice) 180 100 40
Total Marks 100

5. Format for CIE (1, 2, 3) Written Test

<table>
<thead>
<tr>
<th>Course Name</th>
<th>Wireless Communication</th>
<th>Test</th>
<th>I/II/III</th>
<th>Sem</th>
<th>III/IV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course Code</td>
<td>20EC42P</td>
<td>Duration 80 Min</td>
<td>Marks 30</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: Answer any one full question from each section. Each full question carries 10 marks.

<table>
<thead>
<tr>
<th>Section</th>
<th>Assessment Questions</th>
<th>Cognitive Levels</th>
<th>Course Outcome</th>
<th>Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>II</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Note for the Course coordinator: Each question may have one, two or three subdivisions. Optional questions in each section carry the same weightage of marks, Cognitive level and course outcomes.

5.(a) Format for CIE-4 Skill Test – Practice

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>COs</th>
<th>Particulars/Dimension</th>
<th>Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>Identification of types of wireless communications & its applications.</td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>Identify the various components of a given wireless communication system & their role in the system.</td>
<td>10</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>Build and demonstrate a WLAN/RFID/ZIGBEE communication for a specific application. Construction / Setting up - 40 Marks. Result / Output - 30 Marks.</td>
<td>70</td>
</tr>
<tr>
<td>4</td>
<td>1, 2, 3</td>
<td>Portfolio evaluation of Practice sessions through Rubrics.</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Total Marks</td>
<td>100</td>
</tr>
</tbody>
</table>

5.(b) Format for CIE-5 Skill Test - Practice

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>COs</th>
<th>Particulars/Dimension</th>
<th>Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>Identification of types of wireless communications & its applications.</td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>Identify the various components of a given wireless communication system & their role in the system.</td>
<td>10</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>Demonstrate a wireless communication system for a specific application Construction - 10 Marks Output - 10 Marks</td>
<td>20</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>Test a given Set Top Box/Mobile Phone. Testing Steps - 25 Marks Troubleshooting Steps - 25 Marks</td>
<td>50</td>
</tr>
<tr>
<td>5</td>
<td>1, 2, 3, 4</td>
<td>Portfolio evaluation of Practice sessions through Rubrics</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Total Marks</td>
<td>100</td>
</tr>
</tbody>
</table>

6. Rubrics for Assessment of Activity (Qualitative Assessment)

<table>
<thead>
<tr>
<th>Sl. No</th>
<th>Dimension</th>
<th>Beginner</th>
<th>Intermediate</th>
<th>Good</th>
<th>Advanced</th>
<th>Expert</th>
<th>Students Score</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>4</td>
<td>6</td>
<td>8</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Descriptor</td>
<td>Descriptor</td>
<td>Descriptor</td>
<td>Descriptor</td>
<td>Descriptor</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Descriptor</td>
<td>Descriptor</td>
<td>Descriptor</td>
<td>Descriptor</td>
<td>Descriptor</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Descriptor</td>
<td>Descriptor</td>
<td>Descriptor</td>
<td>Descriptor</td>
<td>Descriptor</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Descriptor</td>
<td>Descriptor</td>
<td>Descriptor</td>
<td>Descriptor</td>
<td>Descriptor</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Average Marks: (8+6+2+2)/4=4.5 5</td>
</tr>
</tbody>
</table>

Note: Dimension and Descriptor shall be defined by the respective course coordinator as per the activities.
7. Reference:

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Microwave Devices and Components by Sylio, Prentice Hall of India, New Delhi</td>
</tr>
<tr>
<td>2</td>
<td>Wireless Communications (Principles and Practice), by Thedore Rappaport</td>
</tr>
<tr>
<td>3</td>
<td>Wireless Communications and Networking, by William Stallings</td>
</tr>
<tr>
<td>4</td>
<td>Mobile Communication by John Schiller, Prentice Hall of India, New Delhi</td>
</tr>
</tbody>
</table>

8. SEE Scheme of Evaluation

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>COs</th>
<th>Particulars/Dimension</th>
<th>Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>Identify the types of wireless communications and its uses/applications</td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>Identify the various components of a given wireless communication system & their role in the system.</td>
<td>10</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>Demonstrate a wireless communication system for a specific application Construction -</td>
<td>15 Marks</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Output -</td>
<td>15 Marks</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>Test a given Set Top Box/Mobile Phone Testing Steps</td>
<td>15 Marks</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Troubleshooting Steps</td>
<td>15 Marks</td>
</tr>
<tr>
<td>5</td>
<td>1,2,3,4</td>
<td>Viva- Voce</td>
<td>20</td>
</tr>
</tbody>
</table>

Total Marks 100

9. Equipment/software list with Specification for a batch of 20 students

<table>
<thead>
<tr>
<th>Sl No</th>
<th>Particulars</th>
<th>Specification</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Computers</td>
<td>Intel Core i5 11th gen/8GB RAM/1 TB HDD/256GB SSD/Graphics 2 GB</td>
<td>20</td>
</tr>
<tr>
<td>2</td>
<td>MATLAB Software</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Dual trace oscilloscope</td>
<td>Up to 20-30MHz</td>
<td>10</td>
</tr>
<tr>
<td>4</td>
<td>CAT5 cable</td>
<td></td>
<td>100m</td>
</tr>
<tr>
<td>5</td>
<td>RJ 45 connectors</td>
<td></td>
<td>100</td>
</tr>
<tr>
<td>6</td>
<td>Arduino microcontroller board</td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>7</td>
<td>RFID Reader , Tag</td>
<td></td>
<td>5, 20</td>
</tr>
<tr>
<td>8</td>
<td>ZigBee Module</td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>9</td>
<td>Satellite Communication trainer kit</td>
<td>Uplink Transmitter, Inbuilt tone generator Satellite Link, Downlink receiver.</td>
<td>5</td>
</tr>
<tr>
<td>10</td>
<td>TV Set up box</td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>11</td>
<td>Mobile phone trainer kit</td>
<td>Onboard Section: Keypad, Dual SIM, Charging Circuit, User interface: Buzzer, Vibrator, Mic, Speaker, Hands free port and display LEDs</td>
<td>5</td>
</tr>
<tr>
<td>12</td>
<td>Not- working mobile phones</td>
<td></td>
<td>5</td>
</tr>
</tbody>
</table>
1. **Rationale**
C is a general purpose programming language which is robust and highly portable used for scripting system applications which form a major part of all operating systems. C language is available on a very wide range of platforms, from embedded microcontrollers to supercomputers. Microcontroller is a compressed microcomputer manufactured to control the functions of embedded systems in various fields such as automobile, aeronautics, robotics, mobile communication, electronic appliances, industrial processing, defense, space, medical applications etc. The future of the micro controller depends on machine learning in embedded systems.

2. **Course Outcomes:** On successful completion of the course, the students will be able to:

<table>
<thead>
<tr>
<th>CO</th>
<th>Course Outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td>Write the code using C constructs for a given requirement, execute the program, debug and to demonstrate that the program produces the required result/output.</td>
</tr>
<tr>
<td>CO2</td>
<td>List the various components and the characteristics of each component in a 8051 Microcontroller.</td>
</tr>
<tr>
<td>CO3</td>
<td>Write an embedded program for a given requirement, test and troubleshoot to obtain the desired output.</td>
</tr>
<tr>
<td>CO4</td>
<td>Identify the right microcontroller/peripheral device using data sheets / specification sheets for a given application.</td>
</tr>
</tbody>
</table>

3. **Course Content**

<table>
<thead>
<tr>
<th>Week</th>
<th>Lecture (Knowledge Criteria)</th>
<th>Tutorial (Activity Criteria)</th>
<th>Practice (Performance Criteria)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3 hours/week</td>
<td>1 hour/week</td>
<td>4 hours/week (2 hours/batch twice in a week)</td>
</tr>
<tr>
<td>1</td>
<td>1, 2, 3</td>
<td>Refer Table 1</td>
<td>1. Familiarisation of TURBO C.</td>
</tr>
<tr>
<td></td>
<td>1. Introduction to C - features, compilation process.</td>
<td></td>
<td>2. Programs to illustrate the use of different data types and verify their memory size.</td>
</tr>
<tr>
<td></td>
<td>2. C tokens, variables and identifiers, constants.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3. Data types - classification, memory requirement, range of values, usage.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| 2 | 1 | 1,2,3 | 1. Operators and Operands - Arithmetic, logical, relational operators.
2. Unary, conditional, assignment and special operators, precedence and associativity.
3. Basic input and output functions, format specifiers, preprocessor directive & library functions | Refer Table 1 |
|----|----|-------|--|
| 3 | 1 | 1,2,3 | 1. Flowchart and Algorithm, Structure of a C program, simple C programs.
2. Branching - conditional - if, if-else, example programs.
3. Nested if-else, switch, example programs. | Refer Table 1 |
| 4 | 1 | 1,2,3 | 1. Looping - for, while, do-while loops.
2. Example programs on looping.
3. Arrays - definition, declaration, initializing single dimensional arrays. Examples. | Refer Table 1 |
| 5 | 1 | 1,2,3 | 1. Strings - declaration, initialization with an example. Two dimensional arrays - declaration, initialization with an example.
2. Functions - elements of user defined functions, example.
3. Pointers - introduction with example. Structures - introduction with example. | Refer Table 1 |
| 6 | 2 | 1 | 1. Introduction to the concepts of embedded systems, microprocessors, microcontrollers.
2. Selection of 8 bit, 16 bit, 32 bit, 64 bit microcontrollers. Introduction to 8051 microcontroller.
3. Architecture of 8051 microcontroller, PSW and special function registers. | Refer Table 1 |
| 7 | 2 | 1,2,3 | 1. Memory organization, general purpose RAM, bit addressable RAM.
2. Register banks, Pin details of 8051. | Refer Table 1 |
<table>
<thead>
<tr>
<th>8</th>
<th>3</th>
<th>1,2,3</th>
<th>3. Interfacing external data and code memory.</th>
<th>2. Write and execute simple ALP to understand different addressing modes.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>1.8051 Addressing modes.</td>
<td>1. Write and execute an ALP to (a) Move a block of data within internal RAM (b) Exchange a block of data between internal RAM and external memory.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2. Instruction set-classification, syntax and function of data transfer instructions,</td>
<td>Refer Table 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3. Arithmetic instructions, Logical instructions.</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>3</td>
<td>1,2,3</td>
<td>1. Bit level instructions, jump instructions.</td>
<td>1. Write an ALP to (a) Evaluate simple arithmetic expression such as y= (((5×2)-(4+1))/3) %2. (b) Perform addition of three 8-bit BCD numbers to result in BCD form.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2. Introduction to Embedded C and its applicability to 8051.</td>
<td>Refer Table 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3. General structure of embedded C program, data types.</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>3</td>
<td>1,2,3</td>
<td>1. Memory types and models, pointers, pointer's memory type.</td>
<td>1. Write and execute a program to search a given 8-bit number in an array of N numbers using embedded C.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2. Time-delay generation using loops, example program.</td>
<td>2. Write and execute a program to toggle a particular bit in the internal RAM with the use of delay subroutine.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3. Arithmetic and logical operators, example programs.</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>3,4</td>
<td>7</td>
<td>1. Features of I/O ports. Interface I/O devices such as LED, buzzer with programs.</td>
<td>1. Write and execute an embedded C program to toggle the LED/buzzer with tone using push-button switch.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2. Polling & interrupt methods, executing an interrupt, IE and IP registers.</td>
<td>2. Write ALPs to enable, disable and priority setting of interrupts and</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3. Enabling, disabling and priority setting, example programs.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
</tr>
</tbody>
</table>
|12| 3,4 | 7 | 1. Bit structure and function of TMOD and TCON registers, mode 1 operation of timers.
2. Time delay generation & example programs.
3. Bit structure of SCON register, SBUF register, TI and RI flags, working of serial port for data transmission and reception.
Refer Table 1
| 1. Write and execute an embedded C program to generate a square wave on P1.2 using timer 0 in mode 1 to generate delay.
2. Observe the square wave of the above program on CRO by downloading the program to the microcontroller kit.
Refer Table 1 |
|13| 3,4 | 5,7 | 1. Interfacing 8051 to Multiplexed seven-segment display with assembly/C program.
2. Interfacing 8051 to ADC 0804, waveform generation using DAC 0808 with assembly/C program.
3. Interfacing 8051 to DC motor, Stepper motor with assembly /C program.
Refer Table 1 | Interfacing experiments
1. Program to control direction and speed of a stepper motor / dc motor. Study the data sheets of stepper motor /dc motor.
2. Program to control traffic lights
OR
Program to generate sine/ rectangular / triangular wave-forms. |
|**Total in hours** | **39** | **13** | **52** |

TABLE 1: Suggested activities for tutorials
The list is shared as an example and not inclusive of all possible activities of the course.
The list of activities for one week can be shared among teams in a batch of students.
<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2.</td>
<td>Give a presentation on comparison of switch and if-else statements.</td>
</tr>
<tr>
<td>3.</td>
<td>Demonstrate the use of break, continue and goto statements in C.</td>
</tr>
<tr>
<td>04</td>
<td>1. Demonstrate the comparison of while, do-while and for loop with an example.</td>
</tr>
<tr>
<td></td>
<td>2. Write and explain a program to print multiplication tables from 1 to 5.</td>
</tr>
<tr>
<td>05</td>
<td>1. Write and explain a program to check whether a given string is palindrome or not.</td>
</tr>
<tr>
<td></td>
<td>2. Write and explain a program to multiply two matrices.</td>
</tr>
<tr>
<td></td>
<td>3. Give a presentation on advantages of user defined functions.</td>
</tr>
<tr>
<td></td>
<td>4. Give a presentation on usage of pointers in C.</td>
</tr>
<tr>
<td>06</td>
<td>1. Give a presentation to differentiate RISC & CISC.</td>
</tr>
<tr>
<td></td>
<td>2. Discuss variants of MCS-51 family and their features.</td>
</tr>
<tr>
<td>07</td>
<td>1. Give a presentation on applications of microcontrollers.</td>
</tr>
<tr>
<td></td>
<td>2. Prepare and explain the memory organization diagram.</td>
</tr>
<tr>
<td></td>
<td>3. Explain bit structure of PSW and PCON registers.</td>
</tr>
<tr>
<td>08</td>
<td>1. Write and explain examples for different addressing modes.</td>
</tr>
<tr>
<td></td>
<td>2. Find the addressing mode, no. of bytes and no. of machine cycles for different instructions.</td>
</tr>
<tr>
<td>09</td>
<td>1. Compare different types of JUMP instructions.</td>
</tr>
<tr>
<td></td>
<td>2. Explain the pros and cons of embedded C.</td>
</tr>
<tr>
<td>10</td>
<td>1. Write embedded C programs for time delay generation using loops.</td>
</tr>
<tr>
<td></td>
<td>2. Write and explain instructions for arithmetic and logical operations.</td>
</tr>
<tr>
<td>11</td>
<td>1. Give a presentation on the importance of I/O ports in microcontrollers and write programs using I/O ports.</td>
</tr>
<tr>
<td></td>
<td>2. Give a presentation on the need of interrupts in microcontrollers.</td>
</tr>
<tr>
<td>12</td>
<td>1. Write and explain bit structures of TCON, TMOD and SCON registers.</td>
</tr>
<tr>
<td></td>
<td>2. Give a presentation on comparison of mode 1 and mode 2 operations of timers.</td>
</tr>
<tr>
<td>13</td>
<td>1. Study the latest technological changes in this course and present the impact of these changes on industry.</td>
</tr>
<tr>
<td></td>
<td>2. List any 5 other microcontrollers used in real world applications and interpret their datasheets.</td>
</tr>
</tbody>
</table>
4. CIE and SEE Assessment Methodologies

<table>
<thead>
<tr>
<th>Sl. No</th>
<th>Assessment</th>
<th>Test Week</th>
<th>Duration In minutes</th>
<th>Max marks</th>
<th>Conversion</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>CIE-1 Written Test</td>
<td>5</td>
<td>80</td>
<td>30</td>
<td>Average of three tests</td>
</tr>
<tr>
<td>2.</td>
<td>CIE-2 Written Test</td>
<td>9</td>
<td>80</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td>CIE-3 Written Test</td>
<td>13</td>
<td>80</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td>CIE-4 Skill Test-Practice</td>
<td>6</td>
<td>180</td>
<td>100</td>
<td>Average of two skill tests</td>
</tr>
<tr>
<td>5.</td>
<td>CIE-5 Skill Test-Practice</td>
<td>12</td>
<td>180</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>6.</td>
<td>CIE-6 Portfolio continuous evaluation of Activity through Rubrics</td>
<td>1-13</td>
<td></td>
<td>10</td>
<td>10</td>
</tr>
</tbody>
</table>

Total CIE Marks 60

Semester End Examination (Practice) 180 100 40

Total Marks 100

5. Format for CIE (1, 2, 3) Written Test

<table>
<thead>
<tr>
<th>Course Name</th>
<th>Embedded C Programming</th>
<th>Test</th>
<th>I/II/III</th>
<th>Sem</th>
<th>III/IV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course Code</td>
<td>20EC43P</td>
<td>Duration</td>
<td>80 Min</td>
<td>Marks</td>
<td>30</td>
</tr>
</tbody>
</table>

Note: Answer any one full question from each section. Each full question carries 10 marks.

<table>
<thead>
<tr>
<th>Section</th>
<th>Assessment Questions</th>
<th>Cognitive Levels</th>
<th>Course Outcome</th>
<th>Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>II</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>III</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note for the Course coordinator: Each question may have one, two or three subdivisions. Optional Questions in each section carry the same weightage of marks, Cognitive level and course outcomes.

5(a) Format for CIE-4 Skill Test - Practice.

<table>
<thead>
<tr>
<th>SL. No</th>
<th>COs</th>
<th>Particulars/Dimension</th>
<th>Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>C Programming
Writing two C programs - 30 Marks
Entry & Execution - 30 Marks
Output - 10 Marks</td>
<td>70</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>List the various components and the characteristics of each component in a 8051 Microcontroller.</td>
<td>20</td>
</tr>
<tr>
<td>3</td>
<td>1,2</td>
<td>Portfolio evaluation of Practice sessions through Rubrics</td>
<td>10</td>
</tr>
</tbody>
</table>

Total Marks 100
5. (b) Format for CIE-5 Skill Test - Practice.

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>COs</th>
<th>Particulars/Dimension</th>
<th>Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>List the various components and the characteristics of each component in a 8051 Microcontroller.</td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>8051 ALP /8051 C programs for a desired output</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Writing program - 20 Marks</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Output - 20 Marks</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>Interfacing program for an application</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Writing program - 20 Marks</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Downloading to kit and Output - 20 Marks</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>2,3,4</td>
<td>Portfolio evaluation of Practice sessions through Rubrics</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Total Marks</td>
<td>100</td>
</tr>
</tbody>
</table>

6. Rubrics for Assessment of Activity (Qualitative Assessment)

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>Dimension</th>
<th>Beginner</th>
<th>Intermediate</th>
<th>Good</th>
<th>Advanced</th>
<th>Expert</th>
<th>Students Score</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>4</td>
<td>6</td>
<td>8</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Descriptor</td>
<td></td>
<td>Descriptor</td>
<td>Descriptor</td>
<td>Descriptor</td>
<td>Descriptor</td>
<td>8</td>
</tr>
<tr>
<td>2</td>
<td>Descriptor</td>
<td></td>
<td>Descriptor</td>
<td>Descriptor</td>
<td>Descriptor</td>
<td>Descriptor</td>
<td>6</td>
</tr>
<tr>
<td>3</td>
<td>Descriptor</td>
<td></td>
<td>Descriptor</td>
<td>Descriptor</td>
<td>Descriptor</td>
<td>Descriptor</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>Descriptor</td>
<td></td>
<td>Descriptor</td>
<td>Descriptor</td>
<td>Descriptor</td>
<td>Descriptor</td>
<td>2</td>
</tr>
</tbody>
</table>

Average Marks = (8+6+2+2)/4 = 4.5

Note: Dimension and Descriptor shall be defined by the respective course coordinator as per the activities

7. Reference:

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>C Programming By Kernighan and Dennis Ritchie 04.</td>
</tr>
</tbody>
</table>
8. SEE Scheme of Evaluation

<table>
<thead>
<tr>
<th>SL No.</th>
<th>COs</th>
<th>Particulars/Dimension</th>
<th>Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>C Programming</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Writing Program</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>- 10 Marks</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Entry & Execution</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>- 10 Marks</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Output</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>- 5 Marks</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>Identify & Explain the functionality of various components in a 8051 Microcontroller</td>
<td>10</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>8051 ALP /8051 C programs for a desired output</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Writing program</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>- 15 Marks</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Output</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>- 5 Marks</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>Interfacing program for an application</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Writing program</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>- 10 Marks</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Downloading to kit and Output</td>
<td>15 Marks</td>
</tr>
<tr>
<td>5</td>
<td>1,2,3,4</td>
<td>Viva-Voce</td>
<td>20</td>
</tr>
</tbody>
</table>

Total Marks | 100 |

9. Equipment/software list with Specification for a batch of 20 students

<table>
<thead>
<tr>
<th>SL No.</th>
<th>Particulars</th>
<th>Specification</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Computers</td>
<td>Intel Core i5 11th gen/8GB RAM/1 TB HDD/256GB SSD/ Graphics 2 GB</td>
<td>20</td>
</tr>
<tr>
<td>2</td>
<td>TURBO C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>8051 Microcontroller kits</td>
<td></td>
<td>20</td>
</tr>
<tr>
<td>4</td>
<td>Interfacing kits</td>
<td></td>
<td>5 each</td>
</tr>
</tbody>
</table>
1. Rationale
Automation in the industrial workplace provides the advantages of improving productivity and quality while reducing errors and waste, increasing safety, and adding flexibility to the manufacturing process. Industrial automation results in increased productivity, more efficient use of materials, increased safety, reliability, better product quality, shorter workweeks for labour, profitability and reduced factory lead times. Worker safety is an important reason for automating an industrial operation. A wide range of industrial controls and automation depends on power electronics. PLC is an industrial computer control system used to control the state of output devices based upon a custom program. SCADA is a centralized system that monitors and controls field devices at remote sites.

2. Course Outcomes: On successful completion of the course, the students will be able to

<table>
<thead>
<tr>
<th>CO-01</th>
<th>Explan the role and importance of power electronics in today’s industrial automation and for a given application list the commonly used components in power electronics.</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO-02</td>
<td>Build a power electronic circuit and demonstrate the working of that circuit for a specific application either in a real or simulated environment.</td>
</tr>
<tr>
<td>CO-03</td>
<td>Design, test and troubleshoot a given PLC automation system to meet defined operational specifications in a simulated environment.</td>
</tr>
<tr>
<td>CO-04</td>
<td>Explain the concept of SCADA, DCS and HMI and list their various applications in industry.</td>
</tr>
</tbody>
</table>

3. Course Content

<table>
<thead>
<tr>
<th>Week</th>
<th>CO</th>
<th>PO</th>
<th>Lecture (Knowledge Criteria)</th>
<th>Tutorial (Activity Criteria)</th>
<th>Practice (Performance Criteria)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1. Introduction to industrial automation, need for power devices, features of power diode, power BJT. 2. Features of SCR, IGBT and Power MOSFET. 3. DIAC and TRIAC - working, applications.</td>
<td>Refer Table 1</td>
<td>1. Conduct an experiment to find the holding current and latching current of SCR. 2. Conduct an experiment to determine break-over voltage of an SCR.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4 hours/week (2 hours/batch twice in a week)</td>
</tr>
<tr>
<td>2</td>
<td>1,2</td>
<td>1</td>
<td>1. Triggering-Need, Triggering circuits - R-triggering, RC-triggering.</td>
<td>Refer Table 1</td>
<td>1. Construct a R triggering circuit and verify its working.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Pulse triggering using UJT relaxation oscillators.</td>
<td>2. Construct a R-C triggering circuit and verify its working.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Commutation-Need, natural and forced commutation of SCR, resonant commutation.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1,2</td>
<td>1,3</td>
<td>1. Auxiliary commutation and Complementary commutation.</td>
<td>1. Verify SCR triggering by UJT relaxation oscillator using a kit.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2. Protection of SCR-Snubber circuit- turn ON, turn OFF and over- voltage.</td>
<td>2. Construct a full-wave controlled rectifier circuit using R-C triggering and verify its working.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3. Controlled rectifiers- Single phase half-wave controlled rectifier, single phase full-wave bridge controlled rectifier (only resistive load), importance of freewheeling diode.</td>
<td>Refer Table 1</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>1,2</td>
<td>1,3</td>
<td>1. Chopper- working principle, duty cycle, chopper control schemes.</td>
<td>1. Verify the working of a constant frequency voltage commutated chopper using a kit.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2. Chopper classifications, Step-up and Step-down choppers.</td>
<td>2. Verify the working of a variable frequency voltage commutated chopper using a kit.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3. Working of first quadrant, second quadrant choppers.</td>
<td>Refer Table 1</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>1,2</td>
<td>1,3</td>
<td>1. Working of two quadrant and four quadrant choppers, Buck and Boost converters.</td>
<td>1. Verify working of series inverter using a kit.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2. Inverters- working principle and types, Half-bridge inverter.</td>
<td>2. Verify working of full bridge inverter using a kit.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3. Full-bridge inverter, Series inverter;</td>
<td>Refer Table 1</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>1,2</td>
<td>1,3</td>
<td>1. Variable dc link inverter, voltage source and current source inverters.</td>
<td>1. Verify PWM techniques in inverters using a simulator.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2. PWM techniques used in inverters.</td>
<td>2. Verify single phase to single phase cycloconverter using a kit.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3. Cycloconverter- classification, working of single phase to single phase midpoint cycloconverter.</td>
<td>Refer Table 1</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>1,2</td>
<td>1,3</td>
<td>1. Photo-electric control of SCR, Light dimmer circuit using DIAC and TRIAC.</td>
<td>1. Verify light dimmer circuit using DIAC and TRIAC.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2. Burglar alarm circuit. Need for electronic control of motors.</td>
<td>2. Simulate and verify the working of Burglar alarm circuit/Photo electric control of SCR/Speed control of DC shunt motor.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3. Armature voltage control method and Field control method for speed control of DC shunt motor.</td>
<td>Refer Table 1</td>
<td></td>
</tr>
</tbody>
</table>
| Page | 2,3 | 1,3, 5 | 1. Speed control of DC motors using dual converters, speed control of Induction motor.
2. PLC-introduction, compare Relay logic control and PLC logic control, block diagram of PLC system, PLC scanning.
3. Internal architecture of PLC, memory organization. | Refer Table 1
1. Verify the speed control of universal motor using a kit.
2. Verify the speed control of stepper motor using inverter in clockwise and anti-clockwise direction using a kit. |
| --- | --- | --- | --- |
| 8 | 3 | 1,3, 5 | 1. PLC input devices – switches, proximity sensors, photoelectric sensors, temperature sensors, liquid level sensors.
2. PLC output devices – solenoids, relay, directional control valve, motors & stepper motors.
3. Programming standards, PLC Ladder diagram, ladder diagram for logic gates. | 1. Familiarization of software for PLC simulation (Keyence/Picosoft).
2. Write ladder diagrams and verify the truth table of all logic gates. |
| 9 | 3 | 1,3, 5 | Refer Table 1 |
| 10 | 3 | 3, 5, 7 | 1. PLC input instructions and outputs- coils, indicators, Conversion of Boolean functions from word description to ladder diagram and vice-versa.
2. Write the ladder diagrams for different applications
Ex i. A system where there has to be no output when any one of four sensors gives an output, otherwise there is to be an output.
ii. Staircase light application.
iii. Conveyor control application.
3. PLC register basics- Input, Holding, Output, PLC arithmetic functions- addition, subtraction, multiplication & division. | 1. Write a ladder diagram for DOL starter and test the output using PLC trainer kit module.
2. Simulate and test the following task using PLC,
A signal lamp is required to be switched ON if a pump is running and the pressure is satisfactory, or if the lamp test switch is closed, otherwise the signal lamp should remain OFF. |
| 11 | 3 | 3, 5, 7 | Refer Table 1
1. PLC Basic comparison functions and its applications.
2. PLC Timer functions- on delay timer, off-delay timer, pulsed timer, one shot, applications of timing functions in process control.
3. PLC Counter functions- up/down counter, applications of | 1. Write a ladder diagram, timing diagram and simulate a circuit for the following process control application.
There are 3 mixing devices on a processing line A, B and C. After the process begins mixer-A is to start after 7 seconds elapse, next mixer-B is to start 3.6 seconds after A. Mixer-C is to start 5 seconds after B. All of them remain ON until a master enable switch is turned OFF. |
PLC counter functions in process control.

2. Write a ladder diagram and simulate a circuit for a process control application in which a paint spray has to run for 40 seconds when the count reaches the value of 25.

12 3, 4 3, 5, 7 1. PLC and the internet, selection of PLC and its maintenance, PID module.
2. Distributed Control System- Introduction, features, hierarchical architecture, advantages.
3. DCS application in chemical plants/ cement plants/ paper and pulp industries, Introduction to HMI/MMI.

Refer Table 1

1. Write the ladder diagram and execute the Water level controller/Staircase light controller application using PLC trainer kit module.
2. Video demonstration and documentation of DCS application in any plant.

13 4 3, 5, 7 1. SCADA-Introduction, background, definition, features, typical SCADA system.
2. SCADA architecture, SCADA hardware & software.
3. SCADA protocols, interfacing PLC with SCADA. applications of SCADA.

Refer Table 1

1. Write the ladder diagram and execute the Lift control/Conveyor control application using PLC trainer kit module.
2. Video demonstration and documentation of the SCADA systems.

Total in hours

39
13
52

Note: 1) In Practice sessions Video demonstration should be followed by MCQs/Quiz/Subjective questions and the evaluation has to be documented.
2) In Practice sessions, all discrete circuits should be simulated using suitable software before its construction and verification.

TABLE 1: Suggested activities for tutorials

The list is shared as an example and not inclusive of all possible activities of the course.
The list of activities for one week can be shared among teams in a batch of students.

<table>
<thead>
<tr>
<th>Week no.</th>
<th>Suggested activities for tutorials</th>
</tr>
</thead>
</table>
| 01 | 1. Give a presentation on constructional features of SCR, its specifications and ratings.
2. Prepare a report on specifications and ratings of Diac and Triac.
3. Discuss feasibility of Germanium Controlled Rectifier. |
| 02 | 1. Discuss the importance of triggering an SCR.
2. Explain the comparison of natural and forced commutation of SCR. |
| 03 | 1. List the applications of controlled rectifiers in industries.
2. Explain any one real time application of a controlled rectifier. |
| 04 | 1. Explain any one real time application of choppers. |
| 05 | 1. Explain the differences between Buck and Boost converters.
2. Collect the information on the type and working of inverter used in your lab UPS. |
| 06 | 1. Differentiate between step up and step down cyclo converter with their applications.
2. Explain the role of a cycloconverter in the working of a washing machine. |
| 07 | 1. Construct and demonstrate any one real time application of SCR/TRIAC (ex: Automatic street lighting/Smoke detector). |
| 08 | 1. List the leading PLC manufacturers around the world and collect information on applications of PLC systems.
2. Prepare a report on advantages of using PLC in automation. |
| 09 | 1. Collect information on the specifications/parameters / datasheets of input devices used with PLC.
2. Collect information on the specifications/parameters / datasheets of output devices used with PLC. |
| 10 | 1. Develop a fire alarm system which has fire sensors providing inputs to a SET-RESET function block so that if one of the sensors is activated, the alarm is set and remains set until it is cleared by being reset.
2. Two conveyors feed a main conveyor, find the main conveyor count from the count of parts entering the two conveyors. |
| 11 | 1. Give a presentation on real time PLC Counter applications.
2. Prepare a report on all types of PLC timer functions.
3. Give a presentation on PLC advanced comparison functions. |
| 12 | 1. Give a presentation on applications of HMI/MMI.
2. Give a presentation on the different levels of industrial control with respect to networking of PLCs.
3. Prepare a report on DCS system integration and DCS flow sheet symbols. |
| 13 | 1. Study the latest technological changes in this course and present the impact of these changes on industry. |
2. Prepare a report on different ways of deploying SCADA systems along with advantages and disadvantages.

4. CIE and SEE Assessment Methodologies

<table>
<thead>
<tr>
<th>Sl. No</th>
<th>Assessment</th>
<th>Test Week</th>
<th>Duration In minutes</th>
<th>Max marks</th>
<th>Conversion</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>CIE-1 Written Test</td>
<td>5</td>
<td>80</td>
<td>30</td>
<td>Average of three tests</td>
</tr>
<tr>
<td>2.</td>
<td>CIE-2 Written Test</td>
<td>9</td>
<td>80</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>3.</td>
<td>CIE-3 Written Test</td>
<td>13</td>
<td>80</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>4.</td>
<td>CIE-4 Skill Test-Practice</td>
<td>6</td>
<td>180</td>
<td>100</td>
<td>Average of two skill tests</td>
</tr>
<tr>
<td>5.</td>
<td>CIE-5 Skill Test-Practice</td>
<td>12</td>
<td>180</td>
<td>100</td>
<td>20</td>
</tr>
<tr>
<td>6.</td>
<td>CIE-6 Portfolio continuous</td>
<td>1-13</td>
<td></td>
<td>10</td>
<td></td>
</tr>
<tr>
<td></td>
<td>evaluation of Activity through</td>
<td></td>
<td></td>
<td>10</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Rubrics</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total CIE Marks 60

Semester End Examination (Practice) 180 100 40

Total Marks 100

5. Format for CIE (1, 2, 3) Written Test

<table>
<thead>
<tr>
<th>Course Name</th>
<th>Industrial Automation</th>
<th>Test</th>
<th>I/II/III</th>
<th>Sem</th>
<th>III/IV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course Code</td>
<td>20EC44P</td>
<td>Duration 80 Min</td>
<td>Marks</td>
<td>30</td>
<td></td>
</tr>
</tbody>
</table>

Note: Answer any one full question from each section. Each full question carries 10 marks.

<table>
<thead>
<tr>
<th>Section</th>
<th>Assessment Questions</th>
<th>Cognitive Levels</th>
<th>Course Outcome</th>
<th>Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>II</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>III</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note for the Course coordinator: Each question may have one, two or three subdivisions. Optional questions in each section carry the same weightage of marks, Cognitive level and course outcomes.
5. (a) Format for CIE-4 Skill Test - Practice.

<table>
<thead>
<tr>
<th>SL. No.</th>
<th>COs</th>
<th>Particulars/Dimension</th>
<th>Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>Identify the various components used in Power Electronics and demonstrate its use for a given application.</td>
<td>20</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>Build a power electronic circuit and demonstrate the working of that circuit for a specific application either in a Real or Simulated environment. Construction of circuit diagram -20 Marks Conduction -20 Marks Output -30 Marks.</td>
<td>70</td>
</tr>
<tr>
<td>3</td>
<td>1,2</td>
<td>Portfolio evaluation of Practice sessions through Rubrics</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Total Marks</td>
<td>100</td>
</tr>
</tbody>
</table>

5. (b) Format for CIE-5 Skill Test - Practice.

<table>
<thead>
<tr>
<th>SL. No.</th>
<th>COs</th>
<th>Particulars/Dimension</th>
<th>Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>Design, Test and Troubleshoot a specific PLC Automation System to meet defined operational specifications in a simulated environment. Writing Ladder diagram (2 applications) - 40 Marks Interfacing to kit - 20 Marks Result - 10 Marks</td>
<td>70</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>Concept of SCADA/DCS/HMI and list their various applications</td>
<td>20</td>
</tr>
<tr>
<td>3</td>
<td>3,4</td>
<td>Portfolio evaluation of Practice sessions through Rubrics</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Total Marks</td>
<td>100</td>
</tr>
</tbody>
</table>

6. Rubrics for Assessment of Activity (Qualitative Assessment)

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>Dimension</th>
<th>Beginner</th>
<th>Intermediate</th>
<th>Good</th>
<th>Advanced</th>
<th>Expert</th>
<th>Students Score</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>4</td>
<td>6</td>
<td>8</td>
<td>10</td>
<td>Score</td>
</tr>
<tr>
<td>1</td>
<td>Descriptor</td>
<td>Descriptor</td>
<td>Descriptor</td>
<td>Descriptor</td>
<td>Descriptor</td>
<td>Descriptor</td>
<td>8</td>
</tr>
<tr>
<td>2</td>
<td>Descriptor</td>
<td>Descriptor</td>
<td>Descriptor</td>
<td>Descriptor</td>
<td>Descriptor</td>
<td>Descriptor</td>
<td>6</td>
</tr>
<tr>
<td>3</td>
<td>Descriptor</td>
<td>Descriptor</td>
<td>Descriptor</td>
<td>Descriptor</td>
<td>Descriptor</td>
<td>Descriptor</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>Descriptor</td>
<td>Descriptor</td>
<td>Descriptor</td>
<td>Descriptor</td>
<td>Descriptor</td>
<td>Descriptor</td>
<td>2</td>
</tr>
</tbody>
</table>

Average Marks= (8+6+2+2)/4=4.5 5

Note: Dimension and Descriptor shall be defined by the respective course coordinator as per the activities

7. Reference:

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>"Programmable Logic Controllers Principles and Applications" by John W. Webb – Ronald A. Reis. 5th Edition, Published by PHI Publication.</td>
</tr>
<tr>
<td>2</td>
<td>"Introduction to PLCs" by Gary Dunning, 3rd Edition, Thomson India Edition</td>
</tr>
<tr>
<td>3</td>
<td>"PLCs" by W. Bolton, 4th edition.</td>
</tr>
</tbody>
</table>
8. SEE Scheme of Evaluation

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>COs</th>
<th>Particulars/Dimension</th>
<th>Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>Identify the various components used in Power Electronics and demonstrate its use for a given application.</td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>Build a power electronic circuit and demonstrate the working of that circuit for a specific application either in a Real or Simulated environment.</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Construction of circuit diagram - 10 Marks</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Conduction -10 Marks</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Output -10 Marks</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>Design, Test and Troubleshoot a specific PLC Automation System to meet defined operational specifications in a simulated environment.</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Writing Ladder diagram - 10 Marks</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Interfacing to kit - 10 Marks</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Result - 10 Marks</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>Concept of SCADA/DCS/HMI and their applications.</td>
<td>10</td>
</tr>
<tr>
<td>5</td>
<td>1, 2, 3, 4</td>
<td>Viva-Voce</td>
<td>20</td>
</tr>
</tbody>
</table>

Total Marks 100

9. Equipment/software list with Specification for a batch of 20 students

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>Particulars</th>
<th>Specification</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Computers</td>
<td>Intel Core i5 11th gen/8GB RAM/1 TB HDD/256GB SSD/Graphics 2 GB</td>
<td>20</td>
</tr>
<tr>
<td>2</td>
<td>POWERSIM simulation software</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Kit for SCR triggering by UJT relaxation oscillator</td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>4</td>
<td>Kit for Voltage commutated chopper both constant frequency & variable frequency.</td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>5</td>
<td>Series Inverter kit</td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>6</td>
<td>Full bridge inverter kit</td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>7</td>
<td>PWM inverter kit</td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>8</td>
<td>Single phase to Single phase cyclo converter kit</td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>9</td>
<td>Light Dimmer kit</td>
<td></td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>Description</td>
<td>Quantity</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>----------</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Speed control of universal motor kit</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Speed control of stepper motor kit</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>PLC kits</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>PLC interfacing kits for Lift control, water level control</td>
<td>3 each</td>
<td></td>
</tr>
</tbody>
</table>
1. Course Outcomes: At the end of the Course, the student will be able to:

<table>
<thead>
<tr>
<th>CO-01</th>
<th>CO1</th>
<th>Understand Preamble, salient features and importance of Indian Constitution.</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO-02</td>
<td>CO2</td>
<td>Understand Fundamental rights, duties and Directive principles of state policy.</td>
</tr>
<tr>
<td>CO-03</td>
<td>CO3</td>
<td>Understand Parliamentary system of governance, Structure, Functions, Power of Central, state governments (Legislative, Executive) and Judiciary.</td>
</tr>
<tr>
<td>CO-04</td>
<td>CO4</td>
<td>Understand Panchayat Raj Institutions and Local self-governments, UPSC, KPSC, NHRC, Status of women, RTE etc.</td>
</tr>
</tbody>
</table>

2. Course Content

<table>
<thead>
<tr>
<th>Week</th>
<th>CO</th>
<th>Detailed Course Content</th>
<th>Contact Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>Introduction to constitution of India-Formation and Composition of the Constituent Assembly-Salient features of the Constitution-Preamble to the Indian Constitution</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>1,2</td>
<td>Fundamental Rights- Definition, The right to equality, The right to freedom, The right against exploitation, The right to freedom of religion.</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>1,2</td>
<td>Cultural and educational rights and The right to constitutional remedies. Fundamental Duties, Directive principles of state policy.</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>1,3</td>
<td>Parliamentary system of governance- Structure of Parliament- Lok Sabha and Rajya Sabha. Functions of parliament- Legislative, Executive, Financial Function Powers of Lok Sabha and Rajya Sabha.</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>1,3</td>
<td>Procedure followed in parliament in making law, Annual financial statement (Budget) – procedure in parliament with respect to estimates, Appropriation bill, Supplementary, additional grants, Vote on account, votes on credit and exception grant, special provisions, rules of procedure.</td>
<td>2</td>
</tr>
<tr>
<td>6</td>
<td>1,3</td>
<td>Structure of union executive, Power and position of President. Vice President, Prime minister and council of ministers.</td>
<td>2</td>
</tr>
<tr>
<td>7</td>
<td>1,3</td>
<td>Structure of the judiciary: Jurisdiction and functions of Supreme Court, high court, and subordinate courts.</td>
<td>2</td>
</tr>
<tr>
<td>8</td>
<td>1,3</td>
<td>Federalism in the Indian constitution- Division of Powers: Union list, State list and concurrent list. Structure of state legislation, Legislative assembly and Legislative council.</td>
<td>2</td>
</tr>
<tr>
<td>9</td>
<td>1,3</td>
<td>Functions of state legislature, Structure of state executive-Powers and positions of Governor, Speaker, Deputy Speaker, Chief Minister and council of minister.</td>
<td>2</td>
</tr>
</tbody>
</table>
Local self-government- meaning-Three tier system, Village Panchayat-Taluk panchayat Zilla panchayat, Local bodies-Municipalities and Corporations, Bruhath Mahanagara Palike, Functions of Election commission, UPSC, KPSC.

Amendment of the constitution, Human Rights-Definition-constitutional provisions-right to life and liberty-Human Rights of Women-Discrimination against women steps that are to be taken to eliminate discrimination against women in Education, employment, health care, Economic and social life,

Human Rights of Children- Who is a child- list the Rights of the Child- Right to education, Protection of Children from Sexual Offences Act (POCSO)-2012-

REFERENCES

1. Introduction to the Constitution of India- Dr. Durga Das Basu

4. CIE and SEE Assessment Methodologies

<table>
<thead>
<tr>
<th>Sl. No</th>
<th>Assessment</th>
<th>Test Week</th>
<th>Duration (In minutes)</th>
<th>Max marks</th>
<th>Conversion</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>CIE-1 Written Test</td>
<td>5</td>
<td>80</td>
<td>30</td>
<td>Average of three tests</td>
</tr>
<tr>
<td>2.</td>
<td>CIE-2 Written Test</td>
<td>9</td>
<td>80</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>CIE-3 Written Test</td>
<td>13</td>
<td>80</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>CIE-4 MCQ</td>
<td>6</td>
<td>60</td>
<td>20</td>
<td>Average of two CIE = 20</td>
</tr>
<tr>
<td>5</td>
<td>CIE-5 Open Book Test</td>
<td>12</td>
<td>60</td>
<td>20</td>
<td></td>
</tr>
</tbody>
</table>

Total CIE Marks 50

Semester End Examination (Practice) -

Total Marks 50